BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1912 related articles for article (PubMed ID: 25834118)

  • 1. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imagined Hand Clenching Force and Speed Modulate Brain Activity and Are Classified by NIRS Combined With EEG.
    Fu Y; Xiong X; Jiang C; Xu B; Li Y; Li H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1641-1652. PubMed ID: 27849544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia.
    Blokland Y; Spyrou L; Thijssen D; Eijsvogels T; Colier W; Floor-Westerdijk M; Vlek R; Bruhn J; Farquhar J
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):222-9. PubMed ID: 24608682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation.
    Hasan MAH; Khan MU; Mishra D
    Biomed Res Int; 2020; 2020():1838140. PubMed ID: 32923476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface.
    Zhang S; Zheng Y; Wang D; Wang L; Ma J; Zhang J; Xu W; Li D; Zhang D
    Neurosci Lett; 2017 Aug; 655():35-40. PubMed ID: 28663052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of hemodynamic responses associated with force and speed imagery for a brain-computer interface.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Med Syst; 2015 May; 39(5):53. PubMed ID: 25732084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the performance of motor imagery EEG classification using phase features.
    Hsu WY
    Clin EEG Neurosci; 2015 Apr; 46(2):113-8. PubMed ID: 25404753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal feature selection from fNIRS signals using genetic algorithms for BCI.
    Noori FM; Naseer N; Qureshi NK; Nazeer H; Khan RA
    Neurosci Lett; 2017 Apr; 647():61-66. PubMed ID: 28336339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks.
    Buccino AP; Keles HO; Omurtag A
    PLoS One; 2016; 11(1):e0146610. PubMed ID: 26730580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels.
    Kwon J; Shin J; Im CH
    PLoS One; 2020; 15(3):e0230491. PubMed ID: 32187208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving classification accuracy of motor imagery EEG using genetic feature selection.
    Hsu WY
    Clin EEG Neurosci; 2014 Jul; 45(3):163-8. PubMed ID: 24048242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI.
    Erdoĝan SB; Özsarfati E; Dilek B; Kadak KS; Hanoĝlu L; Akın A
    J Neural Eng; 2019 Apr; 16(2):026029. PubMed ID: 30634177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor imagery EEG discrimination using the correlation of wavelet features.
    Hsu WY
    Clin EEG Neurosci; 2015 Apr; 46(2):94-9. PubMed ID: 24599891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI.
    Hong KS; Naseer N; Kim YH
    Neurosci Lett; 2015 Feb; 587():87-92. PubMed ID: 25529197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodal motor imagery decoding method based on temporal spatial feature alignment and fusion.
    Zhang Y; Qiu S; He H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36854181
    [No Abstract]   [Full Text] [Related]  

  • 20. Towards optimal visual presentation design for hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Sejdic E; Akcakaya M
    J Neural Eng; 2018 Oct; 15(5):056019. PubMed ID: 30021931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 96.