These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1122 related articles for article (PubMed ID: 25834232)

  • 1. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs.
    Joyner MJ; Casey DP
    Physiol Rev; 2015 Apr; 95(2):549-601. PubMed ID: 25834232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disparity in regional and systemic circulatory capacities: do they affect the regulation of the circulation?
    Calbet JA; Joyner MJ
    Acta Physiol (Oxf); 2010 Aug; 199(4):393-406. PubMed ID: 20345408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand.
    Casey DP; Joyner MJ
    J Physiol; 2012 Dec; 590(24):6321-6. PubMed ID: 22988134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade.
    Hellsten Y; Krustrup P; Iaia FM; Secher NH; Bangsbo J
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1106-12. PubMed ID: 19193948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle blood flow, hypoxia, and hypoperfusion.
    Joyner MJ; Casey DP
    J Appl Physiol (1985); 2014 Apr; 116(7):852-7. PubMed ID: 23887898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local control of skeletal muscle blood flow during exercise: influence of available oxygen.
    Casey DP; Joyner MJ
    J Appl Physiol (1985); 2011 Dec; 111(6):1527-38. PubMed ID: 21885800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow.
    Pearson J; Low DA; Stöhr E; Kalsi K; Ali L; Barker H; González-Alonso J
    Am J Physiol Regul Integr Comp Physiol; 2011 Mar; 300(3):R663-73. PubMed ID: 21178127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle blood flow responses to hypoperfusion at rest and during rhythmic exercise in humans.
    Casey DP; Joyner MJ
    J Appl Physiol (1985); 2009 Aug; 107(2):429-37. PubMed ID: 19520838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of muscle blood flow.
    Hudlická O
    Clin Physiol; 1985 Jun; 5(3):201-29. PubMed ID: 3924469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle contractions increase exercise hyperemia by being permissive for high flows.
    Magder S
    J Appl Physiol (1985); 2005 Aug; 99(2):777. PubMed ID: 16020447
    [No Abstract]   [Full Text] [Related]  

  • 11. Organ-specific physiological responses to acute physical exercise and long-term training in humans.
    Heinonen I; Kalliokoski KK; Hannukainen JC; Duncker DJ; Nuutila P; Knuuti J
    Physiology (Bethesda); 2014 Nov; 29(6):421-36. PubMed ID: 25362636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle blood flow capacity: role of muscle pump in exercise hyperemia.
    Laughlin MH
    Am J Physiol; 1987 Nov; 253(5 Pt 2):H993-1004. PubMed ID: 3318504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurogenic vasodilation in human skeletal muscle: possible role in contraction-induced hyperaemia.
    Joyner MJ; Halliwill JR
    Acta Physiol Scand; 2000 Apr; 168(4):481-8. PubMed ID: 10759585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle blood flow in humans and its regulation during exercise.
    Saltin B; Rådegran G; Koskolou MD; Roach RC
    Acta Physiol Scand; 1998 Mar; 162(3):421-36. PubMed ID: 9578388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of O2 and CO2 in sustained exercise hyperemia of canine skeletal muscle.
    Stowe DF; Owen TL; Anderson DK; Haddy FJ; Scott JB
    Am J Physiol; 1975 Jul; 229(1):28-33. PubMed ID: 238405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia.
    Heinonen IH; Kemppainen J; Kaskinoro K; Peltonen JE; Borra R; Lindroos M; Oikonen V; Nuutila P; Knuuti J; Boushel R; Kalliokoski KK
    Am J Physiol Regul Integr Comp Physiol; 2010 Jul; 299(1):R72-9. PubMed ID: 20427728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of skeletal muscle blood flow during exercise in ageing humans.
    Hearon CM; Dinenno FA
    J Physiol; 2016 Apr; 594(8):2261-73. PubMed ID: 26332887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg.
    Mortensen SP; González-Alonso J; Damsgaard R; Saltin B; Hellsten Y
    J Physiol; 2007 Jun; 581(Pt 2):853-61. PubMed ID: 17347273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cerebral blood flow and metabolism during exercise.
    Smith KJ; Ainslie PN
    Exp Physiol; 2017 Nov; 102(11):1356-1371. PubMed ID: 28786150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.