These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25834262)

  • 1. Quantification of cell, actin, and nuclear DNA morphology with high-throughput microscopy and CalMorph.
    Okada H; Ohnuki S; Ohya Y
    Cold Spring Harb Protoc; 2015 Apr; 2015(4):408-12. PubMed ID: 25834262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program.
    Negishi T; Nogami S; Ohya Y
    J Biotechnol; 2009 May; 141(3-4):109-17. PubMed ID: 19433213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the biological activity of a novel 24-membered macrolide JBIR-19 in Saccharomyces cerevisiae by the morphological imaging program CalMorph.
    Ohnuki S; Kobayashi T; Ogawa H; Kozone I; Ueda JY; Takagi M; Shin-Ya K; Hirata D; Nogami S; Ohya Y
    FEMS Yeast Res; 2012 May; 12(3):293-304. PubMed ID: 22129199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of image processing programs for accurate measurement of budding and fission yeast morphology.
    Suzuki G; Sawai H; Ohtani M; Nogami S; Sano-Kumagai F; Saka A; Yukawa M; Saito TL; Sese J; Hirata D; Morishita S; Ohya Y
    Curr Genet; 2006 Apr; 49(4):237-47. PubMed ID: 16397764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic changes in brewing yeast cells in culture revealed by statistical analyses of yeast morphological data.
    Ohnuki S; Enomoto K; Yoshimoto H; Ohya Y
    J Biosci Bioeng; 2014 Mar; 117(3):278-84. PubMed ID: 24012106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCMD: Saccharomyces cerevisiae Morphological Database.
    Saito TL; Ohtani M; Sawai H; Sano F; Saka A; Watanabe D; Yukawa M; Ohya Y; Morishita S
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D319-22. PubMed ID: 14681423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate, precise modeling of cell proliferation kinetics from time-lapse imaging and automated image analysis of agar yeast culture arrays.
    Shah NA; Laws RJ; Wardman B; Zhao LP; Hartman JL
    BMC Syst Biol; 2007 Jan; 1():3. PubMed ID: 17408510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of image processing program for yeast cell morphology.
    Ohtani M; Saka A; Sano F; Ohya Y; Morishita S
    J Bioinform Comput Biol; 2004 Jan; 1(4):695-709. PubMed ID: 15290760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of yeast viability during a stress-model alcoholic fermentation using reagent-free microscopy image analysis.
    Tibayrenc P; Ghommidh C; Preziosi-Belloy L
    Biotechnol Prog; 2011; 27(2):539-46. PubMed ID: 21290616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid Growth of Arrayed Fluorescently Tagged Saccharomyces cerevisiae Strains for Live-Cell High-Throughput Microscopy Screens.
    Cox MJ; Chong YT; Boone C; Andrews B
    Cold Spring Harb Protoc; 2016 Apr; 2016(4):pdb.prot088799. PubMed ID: 27037071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback regulation of microscopes by image processing.
    Tsukada Y; Hashimoto K
    Dev Growth Differ; 2013 May; 55(4):550-62. PubMed ID: 23594233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust generic method for grid detection in white light microscopy Malassez blade images in the context of cell counting.
    Marin A; Denimal E; Guyot S; Journaux L; Molin P
    Microsc Microanal; 2015 Feb; 21(1):239-48. PubMed ID: 25510177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of Ca2+-induced morphology revealed by morphological phenotyping of Ca2+-sensitive mutants of Saccharomyces cerevisiae.
    Ohnuki S; Nogami S; Kanai H; Hirata D; Nakatani Y; Morishita S; Ohya Y
    Eukaryot Cell; 2007 May; 6(5):817-30. PubMed ID: 17351076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic characterisation of filamentous microbes: towards fully automated morphological quantification through image analysis.
    Barry DJ; Williams GA
    J Microsc; 2011 Oct; 244(1):1-20. PubMed ID: 21812778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast cell cycle analysis: combining DNA staining with cell and nuclear morphology.
    Calvert ME; Lannigan J
    Curr Protoc Cytom; 2010 Apr; Chapter 9():Unit 9.32.1-16. PubMed ID: 20373497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image-based prediction of drug target in yeast.
    Ohnuki S; Okada H; Ohya Y
    Methods Mol Biol; 2015; 1263():319-27. PubMed ID: 25618355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DetecTiff: a novel image analysis routine for high-content screening microscopy.
    Gilbert DF; Meinhof T; Pepperkok R; Runz H
    J Biomol Screen; 2009 Sep; 14(8):944-55. PubMed ID: 19641223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of signaling events by combining high-throughput screening technology with computer-based image analysis.
    Kodiha M; Brown CM; Stochaj U
    Sci Signal; 2008 Sep; 1(37):pl2. PubMed ID: 18799422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in situ probe for on-line monitoring of cell density and viability on the basis of dark field microscopy in conjunction with image processing and supervised machine learning.
    Wei N; You J; Friehs K; Flaschel E; Nattkemper TW
    Biotechnol Bioeng; 2007 Aug; 97(6):1489-500. PubMed ID: 17274069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the efficacy of low-level image content descriptors for computer-based fluorescence microscopy image analysis.
    Shamir L
    J Microsc; 2011 Sep; 243(3):284-92. PubMed ID: 21605118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.