These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25834840)

  • 1. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering.
    Irastorza RM; Drouin B; Blangino E; Mantovani D
    ScientificWorldJournal; 2015; 2015():859416. PubMed ID: 25834840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and mechanical characterisation of self-compressed collagen gels.
    Andriakopoulou CE; Zadpoor AA; Grant MH; Riches PE
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():243-247. PubMed ID: 29519435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condensed cellular seeded collagen gel as an improved biomaterial for tissue engineering of articular cartilage.
    Mueller-Rath R; Gavénis K; Andereya S; Mumme T; Albrand M; Stoffel M; Weichert D; Schneider U
    Biomed Mater Eng; 2010; 20(6):317-28. PubMed ID: 21263178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressed collagen gel as the scaffold for skin engineering.
    Hu K; Shi H; Zhu J; Deng D; Zhou G; Zhang W; Cao Y; Liu W
    Biomed Microdevices; 2010 Aug; 12(4):627-35. PubMed ID: 20300856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen fiber alignment does not explain mechanical anisotropy in fibroblast populated collagen gels.
    Thomopoulos S; Fomovsky GM; Chandran PL; Holmes JW
    J Biomech Eng; 2007 Oct; 129(5):642-50. PubMed ID: 17887889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels.
    Feng Z; Ishiguro Y; Fujita K; Kosawada T; Nakamura T; Sato D; Kitajima T; Umezu M
    Biomaterials; 2015 Oct; 67():365-81. PubMed ID: 26247391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of silk-reinforced PDMS properties for soft tissue engineering applications.
    Kilikevičius A; Balčiūnas E; Kilikevičienė K; Maknickas A; Bukelskienė V; Baltriukienė D; Kačianauskas R
    Technol Health Care; 2018; 26(S2):679-688. PubMed ID: 29843291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and biological performances of new scaffolds made of collagen hydrogels and fibroin microfibers for vascular tissue engineering.
    de Moraes MA; Paternotte E; Mantovani D; Beppu MM
    Macromol Biosci; 2012 Sep; 12(9):1253-64. PubMed ID: 22847779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic viscoelastic properties of collagen gels with high mechanical strength.
    Mori H; Shimizu K; Hara M
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3230-6. PubMed ID: 23706205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive modeling of compressible type-I collagen hydrogels.
    Lane BA; Harmon KA; Goodwin RL; Yost MJ; Shazly T; Eberth JF
    Med Eng Phys; 2018 Mar; 53():39-48. PubMed ID: 29396019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopatterning of collagen scaffolds improve the mechanical properties of tissue engineered vascular grafts.
    Zorlutuna P; Elsheikh A; Hasirci V
    Biomacromolecules; 2009 Apr; 10(4):814-21. PubMed ID: 19226102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study.
    Hu JJ; Liu YC; Chen GW; Wang MX; Lee PY
    Biomech Model Mechanobiol; 2013 Oct; 12(5):849-68. PubMed ID: 23096240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions.
    Duan X; Sheardown H
    Biomaterials; 2006 Sep; 27(26):4608-17. PubMed ID: 16713624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.
    Ryan AJ; O'Brien FJ
    Biomaterials; 2015 Dec; 73():296-307. PubMed ID: 26431909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of silica-hybridized collagen hydrogels as three-dimensional cell matrices for hard tissue engineering.
    Yu HS; Lee EJ; Seo SJ; Knowles JC; Kim HW
    J Biomater Appl; 2015 Sep; 30(3):338-50. PubMed ID: 26079389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constraint stress, microstructural characteristics, and enhanced mechanical properties of a special fibroblast-embedded collagen construct.
    Feng Z; Ishibashi M; Nomura Y; Kitajima T; Nakamura T
    Artif Organs; 2006 Nov; 30(11):870-7. PubMed ID: 17062110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic characterization of rat cerebral cortex and type I collagen scaffolds for central nervous system tissue engineering.
    Elias PZ; Spector M
    J Mech Behav Biomed Mater; 2012 Aug; 12():63-73. PubMed ID: 22659367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of the mechanical properties of contracted collagen gels populated with rat fibroblasts or cardiomyocytes.
    Feng Z; Matsumoto T; Nakamura T
    J Artif Organs; 2003; 6(3):192-6. PubMed ID: 14598103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In the beginning there were soft collagen-cell gels: towards better 3D connective tissue models?
    Brown RA
    Exp Cell Res; 2013 Oct; 319(16):2460-9. PubMed ID: 23856376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures.
    Cummings CL; Gawlitta D; Nerem RM; Stegemann JP
    Biomaterials; 2004 Aug; 25(17):3699-706. PubMed ID: 15020145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.