BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25835024)

  • 1. Block of postjunctional muscle-type acetylcholine receptors in vivo causes train-of-four fade in mice.
    Nagashima M; Sasakawa T; Schaller SJ; Martyn JA
    Br J Anaesth; 2015 Jul; 115(1):122-7. PubMed ID: 25835024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Train-of-four and tetanic fade are not always a prejunctional phenomenon as evaluated by toxins having highly specific pre- and postjunctional actions.
    Nagashima M; Yasuhara S; Martyn JAJ
    Anesth Analg; 2013 May; 116(5):994-1000. PubMed ID: 23477960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. alpha-Conotoxin GI produces tetanic fade at the rat neuromuscular junction.
    Blount K; Johnson A; Prior C; Marshall IG
    Toxicon; 1992 Aug; 30(8):835-42. PubMed ID: 1355934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of neuronal facilitatory nicotinic receptors containing alpha 3 beta 2 subunits contribute to tetanic fade in the rat isolated diaphragm.
    Faria M; Oliveira L; Timóteo MA; Lobo MG; Correia-De-Sá P
    Synapse; 2003 Aug; 49(2):77-88. PubMed ID: 12740863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic snake beta-neurotoxins produce tetanic fade and endplate potential run-down during neuromuscular blockade in mouse diaphragm.
    Wilson HI; Nicholson GM
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Nov; 356(5):626-34. PubMed ID: 9402043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Train-of-four fade during neuromuscular blockade induced by tubocurarine, succinylcholine or alpha-bungarotoxin in the rat isolated hemidiaphragm.
    Cheah LS; Gwee MC
    Clin Exp Pharmacol Physiol; 1988 Dec; 15(12):937-43. PubMed ID: 2854017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic principles of neuromuscular transmission.
    Martyn JA; Fagerlund MJ; Eriksson LI
    Anaesthesia; 2009 Mar; 64 Suppl 1():1-9. PubMed ID: 19222426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous adenosine prevents post-tetanic release facilitation mediated by alpha3beta2 nicotinic autoreceptors.
    Timóteo MA; Faria M; Correia-de-Sá P
    Eur J Pharmacol; 2003 Mar; 464(2-3):115-25. PubMed ID: 12620503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotinic antagonists produce differing amounts of tetanic fade in the isolated diaphragm of the rat.
    Gibb AJ; Marshall IG
    Br J Pharmacol; 1986 Nov; 89(3):619-24. PubMed ID: 2879597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular effects of candoxin, a novel toxin from the venom of the Malayan krait (Bungarus candidus).
    Nirthanan S; Charpantier E; Gopalakrishnakone P; Gwee MC; Khoo HE; Cheah LS; Kini RM; Bertrand D
    Br J Pharmacol; 2003 Jun; 139(4):832-44. PubMed ID: 12813007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative pre- and postjunctional effects of a new vecuronium analogue, Org 9426, at the rat neuromuscular junction.
    Tian L; Mehta MP; Prior C; Marshall IG
    Br J Anaesth; 1992 Sep; 69(3):284-7. PubMed ID: 1356399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nondepolarizing neuromuscular blocking drugs and train-of-four fade.
    McCoy EP; Connolly FM; Mirakhur RK; Loan PB; Paxton LD
    Can J Anaesth; 1995 Mar; 42(3):213-6. PubMed ID: 7743572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic muscarinic and adenosine receptors are involved in 2 Hz-induced train-of-four fade caused by antinicotinic neuromuscular relaxants in the rat.
    Pereira M; Bornia E; Correia-de-Sá P; Alves-Do-Prado W
    Clin Exp Pharmacol Physiol; 2011 Nov; 38(11):764-70. PubMed ID: 21848867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetanic fade during partial transmission failure produced by non-depolarizing neuromuscular blocking drugs in the cat.
    Bowman WC; Webb SN
    Clin Exp Pharmacol Physiol; 1976; 3(6):545-55. PubMed ID: 188580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenosine A(2A) receptor antagonists are broad facilitators of antinicotinic neuromuscular blockade monitored either with 2 Hz train-of-four or 50 Hz tetanic stimuli.
    Pereira MW; Correia-de-Sá P; Alves-Do-Prado W
    Clin Exp Pharmacol Physiol; 2012 Oct; 39(10):869-77. PubMed ID: 23013133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo recovery of muscle contraction after alpha-bungarotoxin binding.
    Fertuck HC; Woodward W; Salpeter MM
    J Cell Biol; 1975 Jul; 66(1):209-13. PubMed ID: 1141378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of presynaptic muscarinic cholinoreceptor blockade on neuromuscular transmission as assessed by the train-of-four and the tetanic fade response to rocuronium.
    Kim YB; Lee S; Lee KC; Kim HJ; Ro YJ; Yang HS
    Clin Exp Pharmacol Physiol; 2017 Jul; 44(7):795-802. PubMed ID: 28394450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological characterization of α-elapitoxin-Al2a from the venom of the Australian pygmy copperhead (Austrelaps labialis): an atypical long-chain α-neurotoxin with only weak affinity for α7 nicotinic receptors.
    Marcon F; Leblanc M; Vetter I; Lewis RJ; Escoubas P; Nicholson GM
    Biochem Pharmacol; 2012 Sep; 84(6):851-63. PubMed ID: 22771828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twitch augmentation and train-of-four fade during onset of neuromuscular block after subclinical doses of suxamethonium.
    Kim SY; Lee JS; Kim SC; Park W
    Br J Anaesth; 1997 Sep; 79(3):379-81. PubMed ID: 9389859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term effects of botulinum toxin on neuromuscular function.
    Frick CG; Richtsfeld M; Sahani ND; Kaneki M; Blobner M; Martyn JA
    Anesthesiology; 2007 Jun; 106(6):1139-46. PubMed ID: 17525589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.