These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25835153)

  • 1. The advent of genome-wide association studies for bacteria.
    Chen PE; Shapiro BJ
    Curr Opin Microbiol; 2015 Jun; 25():17-24. PubMed ID: 25835153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking bacterial genome-wide association study methods using simulated genomes and phenotypes.
    Saber MM; Shapiro BJ
    Microb Genom; 2020 Mar; 6(3):. PubMed ID: 32100713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial genome-wide association study: methodologies and applications.
    Yang C; Yang RF; Cui Y
    Yi Chuan; 2018 Jan; 40(1):57-65. PubMed ID: 29367193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical perspectives for genome-wide association studies (GWAS).
    Barrett JH; Taylor JC; Iles MM
    Methods Mol Biol; 2014; 1168():47-61. PubMed ID: 24870130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association mapping in bacteria?
    Falush D; Bowden R
    Trends Microbiol; 2006 Aug; 14(8):353-5. PubMed ID: 16782339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host genetic studies in adult pulmonary tuberculosis.
    Meyer CG; Thye T
    Semin Immunol; 2014 Dec; 26(6):445-53. PubMed ID: 25307123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events.
    Jaillard M; Lima L; Tournoud M; Mahé P; van Belkum A; Lacroix V; Jacob L
    PLoS Genet; 2018 Nov; 14(11):e1007758. PubMed ID: 30419019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic diversity, population structure and drug resistance of Mycobacterium tuberculosis in Peru.
    Taype CA; Agapito JC; Accinelli RA; Espinoza JR; Godreuil S; Goodman SJ; Bañuls AL; Shaw MA
    Infect Genet Evol; 2012 Apr; 12(3):577-85. PubMed ID: 22342744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis.
    Omae Y; Toyo-Oka L; Yanai H; Nedsuwan S; Wattanapokayakit S; Satproedprai N; Smittipat N; Palittapongarnpim P; Sawanpanyalert P; Inunchot W; Pasomsub E; Wichukchinda N; Mushiroda T; Kubo M; Tokunaga K; Mahasirimongkol S
    J Hum Genet; 2017 Dec; 62(12):1015-1022. PubMed ID: 28878339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic association analysis: a primer on how it works, its strengths and its weaknesses.
    Rodriguez-Murillo L; Greenberg DA
    Int J Androl; 2008 Dec; 31(6):546-56. PubMed ID: 18522673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proportion of mutations fixed in the genomes of in vitro selected isogenic drug-resistant Mycobacterium tuberculosis mutants can be detected as minority variants in the parent culture.
    Bergval I; Coll F; Schuitema A; de Ronde H; Mallard K; Pain A; McNerney R; Clark TG; Anthony RM
    FEMS Microbiol Lett; 2015 Jan; 362(2):1-7. PubMed ID: 25670707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forest and Trees: Exploring Bacterial Virulence with Genome-wide Association Studies and Machine Learning.
    Allen JP; Snitkin E; Pincus NB; Hauser AR
    Trends Microbiol; 2021 Jul; 29(7):621-633. PubMed ID: 33455849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of virulence factors and antibiotic resistance markers using bacterial genomics.
    Bakour S; Sankar SA; Rathored J; Biagini P; Raoult D; Fournier PE
    Future Microbiol; 2016; 11(3):455-66. PubMed ID: 26974504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of linkage analysis, genome-wide association studies, and next-generation sequencing in the identification of disease-causing mutations.
    Londin E; Yadav P; Surrey S; Kricka LJ; Fortina P
    Methods Mol Biol; 2013; 1015():127-46. PubMed ID: 23824853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Planning a genome-wide association study: points to consider.
    Hakonarson H; Grant SF
    Ann Med; 2011; 43(6):451-60. PubMed ID: 21595511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical issues in genome-wide association studies for physical activity.
    Kim J; Oh S; Min H; Kim Y; Park T
    Ann N Y Acad Sci; 2011 Jul; 1229():38-44. PubMed ID: 21793837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial genome-wide association studies: lessons from human GWAS.
    Power RA; Parkhill J; de Oliveira T
    Nat Rev Genet; 2017 Jan; 18(1):41-50. PubMed ID: 27840430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymorphic L1 retrotransposons are frequently in strong linkage disequilibrium with neighboring SNPs.
    Higashino S; Ohno T; Ishiguro K; Aizawa Y
    Gene; 2014 May; 541(1):55-9. PubMed ID: 24614499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Association Analysis Using R.
    Isidro-Sánchez J; Akdemir D; Montilla-Bascón G
    Methods Mol Biol; 2017; 1536():189-207. PubMed ID: 28132152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.