These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25835660)

  • 1. Orthogonal and parallel lattice plasmon resonance in core-shell SiO(2)/Au nanocylinder arrays.
    Lin L; Yi Y
    Opt Express; 2015 Jan; 23(1):130-42. PubMed ID: 25835660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice plasmon resonance in core-shell SiO₂/Au nanocylinder arrays.
    Lin L; Yi Y
    Opt Lett; 2014 Aug; 39(16):4823-6. PubMed ID: 25121884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors.
    Lin L; Zheng Y
    Nanoscale; 2015 Jul; 7(28):12205-14. PubMed ID: 26133011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple plasmonic-photonic couplings in the Au nanobeaker arrays: enhanced robustness and wavelength tunability.
    Lin L; Zheng Y
    Opt Lett; 2015 May; 40(9):2060-3. PubMed ID: 25927784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon field enhancement in silver core-protruded silicon shell nanocylinder illuminated with light at 633 nm.
    Sung MJ; Ma YF; Chau YF; Huang DW
    Appl Opt; 2010 Nov; 49(32):6295-301. PubMed ID: 21068861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.
    Han S; Lee BJ
    Opt Express; 2016 Jan; 24(2):A202-14. PubMed ID: 26832574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance.
    Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P
    Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method.
    Liu GQ; Hu Y; Liu ZQ; Chen YH; Cai ZJ; Zhang XN; Huang K
    Phys Chem Chem Phys; 2014 Mar; 16(9):4320-8. PubMed ID: 24452786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity.
    Dasgupta A; Kumar GV
    Appl Opt; 2012 Apr; 51(11):1688-93. PubMed ID: 22505158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D nanopillar optical antenna photodetectors.
    Senanayake P; Hung CH; Shapiro J; Scofield A; Lin A; Williams BS; Huffaker DL
    Opt Express; 2012 Nov; 20(23):25489-96. PubMed ID: 23187366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific growth of a Pt shell on Au nanoplates: tailoring their surface plasmonic behavior.
    Jang HJ; Hong S; Ham S; Shuford KL; Park S
    Nanoscale; 2014 Jul; 6(13):7339-45. PubMed ID: 24861989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon near-field resonance characteristics of silver shell nanocylinders arranged in triangular geometry.
    Jacob J; R A; Mathew V
    Appl Opt; 2011 Nov; 50(33):6277-82. PubMed ID: 22108888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots.
    Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK
    Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic percolation: plasmon-manifested dielectric-to-metal transition.
    Chen H; Wang F; Li K; Woo KC; Wang J; Li Q; Sun LD; Zhang X; Lin HQ; Yan CH
    ACS Nano; 2012 Aug; 6(8):7162-71. PubMed ID: 22757659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.
    Uzayisenga V; Lin XD; Li LM; Anema JR; Yang ZL; Huang YF; Lin HX; Li SB; Li JF; Tian ZQ
    Langmuir; 2012 Jun; 28(24):9140-6. PubMed ID: 22506587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between absorption and radiative decay rates of surface plasmon polaritons for field enhancement in periodic arrays.
    Cao Z; Zhang L; Chan CY; Ong HC
    Opt Lett; 2014 Feb; 39(3):501-4. PubMed ID: 24487850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays.
    Henson J; DiMaria J; Dimakis E; Moustakas TD; Paiella R
    Opt Lett; 2012 Jan; 37(1):79-81. PubMed ID: 22212797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.