These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25835789)

  • 1. A viscoelastic model for axonal microtubule rupture.
    Shamloo A; Manuchehrfar F; Rafii-Tabar H
    J Biomech; 2015 May; 48(7):1241-7. PubMed ID: 25835789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic response of axonal microtubules under suddenly applied end forces.
    Manuchehrfar F; Shamloo A; Mehboudi N
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6183-6. PubMed ID: 25571409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsional behavior of axonal microtubule bundles.
    Lazarus C; Soheilypour M; Mofrad MR
    Biophys J; 2015 Jul; 109(2):231-9. PubMed ID: 26200859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modeling of axonal microtubule bundles under tension.
    Peter SJ; Mofrad MR
    Biophys J; 2012 Feb; 102(4):749-57. PubMed ID: 22385845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury: predictions from a mathematical model.
    Ahmadzadeh H; Smith DH; Shenoy VB
    Biophys J; 2014 Mar; 106(5):1123-33. PubMed ID: 24606936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Effects of Dynamic Binding between Tau Proteins on Microtubules during Axonal Injury.
    Ahmadzadeh H; Smith DH; Shenoy VB
    Biophys J; 2015 Dec; 109(11):2328-37. PubMed ID: 26636944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the atomistic-based continuum viscoelastic constitutive relations for axonal microtubules.
    Adnan A; Qidwai S; Bagchi A
    J Mech Behav Biomed Mater; 2018 Oct; 86():375-389. PubMed ID: 30015209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta'-iminodipropionitrile-intoxicated axon as a model system.
    Hirokawa N; Bloom GS; Vallee RB
    J Cell Biol; 1985 Jul; 101(1):227-39. PubMed ID: 2409096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometrical nonlinear elasticity of axon under tension: A coarse-grained computational study.
    Liu N; Chavoshnejad P; Li S; Razavi MJ; Liu T; Pidaparti R; Wang X
    Biophys J; 2021 Sep; 120(17):3697-3708. PubMed ID: 34310941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Buckling behavior of individual and bundled microtubules.
    Soheilypour M; Peyro M; Peter SJ; Mofrad MRK
    Biophys J; 2015 Apr; 108(7):1718-1726. PubMed ID: 25863063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local Nucleation of Microtubule Bundles through Tubulin Concentration into a Condensed Tau Phase.
    Hernández-Vega A; Braun M; Scharrel L; Jahnel M; Wegmann S; Hyman BT; Alberti S; Diez S; Hyman AA
    Cell Rep; 2017 Sep; 20(10):2304-2312. PubMed ID: 28877466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered microtubule organization in small-calibre axons of mice lacking tau protein.
    Harada A; Oguchi K; Okabe S; Kuno J; Terada S; Ohshima T; Sato-Yoshitake R; Takei Y; Noda T; Hirokawa N
    Nature; 1994 Jun; 369(6480):488-91. PubMed ID: 8202139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of tau in the spatial organization of axonal microtubules: keeping parallel microtubules evenly distributed despite macromolecular crowding.
    Méphon-Gaspard A; Boca M; Pioche-Durieu C; Desforges B; Burgo A; Hamon L; Piétrement O; Pastré D
    Cell Mol Life Sci; 2016 Oct; 73(19):3745-60. PubMed ID: 27076215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the Axon as an Active Partner with the Growth Cone in Axonal Elongation.
    de Rooij R; Kuhl E; Miller KE
    Biophys J; 2018 Nov; 115(9):1783-1795. PubMed ID: 30309611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The balance between tau protein's microtubule growth and nucleation activities: implications for the formation of axonal microtubules.
    Brandt R; Lee G
    J Neurochem; 1993 Sep; 61(3):997-1005. PubMed ID: 8360696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains.
    Qiang L; Sun X; Austin TO; Muralidharan H; Jean DC; Liu M; Yu W; Baas PW
    Curr Biol; 2018 Jul; 28(13):2181-2189.e4. PubMed ID: 30008334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles.
    Prezel E; Elie A; Delaroche J; Stoppin-Mellet V; Bosc C; Serre L; Fourest-Lieuvin A; Andrieux A; Vantard M; Arnal I
    Mol Biol Cell; 2018 Jan; 29(2):154-165. PubMed ID: 29167379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Herpes simplex virus-mediated expression of the axonal protein tau in human model neurons (NT2-N cells).
    Fath T; Eidenmüller J; Maas T; Brandt R
    Microsc Res Tech; 2000 Jan; 48(2):85-96. PubMed ID: 10649509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Strain Rate on Single Tau, Dimerized Tau and Tau-Microtubule Interface: A Molecular Dynamics Simulation Study.
    Khan MI; Gilpin K; Hasan F; Mahmud KAHA; Adnan A
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientation, assembly, and stability of microtubule bundles induced by a fragment of tau protein.
    Brandt R; Lee G
    Cell Motil Cytoskeleton; 1994; 28(2):143-54. PubMed ID: 8087873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.