BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25835790)

  • 1. Dimensionless analysis of valveless pumping in a thick-wall elastic tube: Application to the tubular embryonic heart.
    Kozlovsky P; Rosenfeld M; Jaffa AJ; Elad D
    J Biomech; 2015 Jun; 48(9):1652-61. PubMed ID: 25835790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube.
    Männer J; Wessel A; Yelbuz TM
    Dev Dyn; 2010 Apr; 239(4):1035-46. PubMed ID: 20235196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia.
    Jung E
    Bull Math Biol; 2007 Oct; 69(7):2181-98. PubMed ID: 17457651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Driving Mechanism for Unidirectional Blood Flow in the Tubular Embryonic Heart.
    Kozlovsky P; Bryson-Richardson RJ; Jaffa AJ; Rosenfeld M; Elad D
    Ann Biomed Eng; 2016 Oct; 44(10):3069-3083. PubMed ID: 27112782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valveless pumping behavior of the simulated embryonic heart tube as a function of contractile patterns and myocardial stiffness.
    Sharifi A; Gendernalik A; Garrity D; Bark D
    Biomech Model Mechanobiol; 2021 Oct; 20(5):2001-2012. PubMed ID: 34297252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes.
    Hiermeier F; Männer J
    J Cardiovasc Dev Dis; 2017 Nov; 4(4):. PubMed ID: 29367548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study of an asymmetric valveless pump to elucidate insights into strategies for pediatric extravascular flow augmentation.
    Anatol J; García-Díaz M; Barrios-Collado C; Moneo-Fernández JA; Horvath M; Parra T; Castro-Ruiz F; Roche ET; Sierra-Pallares J
    Sci Rep; 2022 Dec; 12(1):22165. PubMed ID: 36550224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Liebau phenomenon: a translational approach to new paradigms of CSF circulation and related flow disturbances.
    Longatti P
    Childs Nerv Syst; 2018 Feb; 34(2):227-233. PubMed ID: 29124390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General tube law for collapsible thin and thick-wall tubes.
    Kozlovsky P; Zaretsky U; Jaffa AJ; Elad D
    J Biomech; 2014 Jul; 47(10):2378-84. PubMed ID: 24837222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohybrid valveless pump-bot powered by engineered skeletal muscle.
    Li Z; Seo Y; Aydin O; Elhebeary M; Kamm RD; Kong H; Saif MTA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1543-1548. PubMed ID: 30635415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube.
    Taber LA; Zhang J; Perucchio R
    J Biomech Eng; 2007 Jun; 129(3):441-9. PubMed ID: 17536912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live mechanistic assessment of localized cardiac pumping in mammalian tubular embryonic heart.
    Wang S; Larina I
    J Biomed Opt; 2020 Aug; 25(8):1-19. PubMed ID: 32762173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The embryonic vertebrate heart tube is a dynamic suction pump.
    Forouhar AS; Liebling M; Hickerson A; Nasiraei-Moghaddam A; Tsai HJ; Hove JR; Fraser SE; Dickinson ME; Gharib M
    Science; 2006 May; 312(5774):751-3. PubMed ID: 16675702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Output of a valveless Liebau pump with biologically relevant vessel properties and compression frequencies.
    Davtyan R; Sarvazyan NA
    Sci Rep; 2021 Jun; 11(1):11505. PubMed ID: 34075100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation.
    Ottesen JT
    J Math Biol; 2003 Apr; 46(4):309-32. PubMed ID: 12673509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Building Valveless Impedance Pumps From Biological Components: Progress and Challenges.
    Sarvazyan N
    Front Physiol; 2021; 12():770906. PubMed ID: 35173623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Following the Beat: Imaging the Valveless Pumping Function in the Early Embryonic Heart.
    Wang S; Larina IV
    J Cardiovasc Dev Dis; 2022 Aug; 9(8):. PubMed ID: 36005431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Analysis of a Cardioid Flow Tube Valveless Piezoelectric Pump for Medical Applications.
    Wang J; Zhang F; Gui Z; Wen Y; Zeng Y; Xie T; Tan T; Chen B; Zhang J
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of a viscoelastic valveless pump: a simple theory with experimental validation.
    Babbs CF
    Biomed Eng Online; 2010 Aug; 9():42. PubMed ID: 20807440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric Elastomer Actuator-Based Valveless Impedance-Driven Pumping for Meso- and Macroscale Applications.
    Benouhiba A; Walter A; Jahren SE; Martinez T; Clavica F; Obrist D; Civet Y; Perriard Y
    Soft Robot; 2024 Apr; 11(2):198-206. PubMed ID: 37729065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.