These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25835847)

  • 1. Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function.
    Kim EK; Ha SG; Lee J; Park YB; Jung KY
    Opt Express; 2015 Jan; 23(2):873-81. PubMed ID: 25835847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unconditionally stable FDTD algorithm for 3-D electromagnetic simulation of nonlinear media.
    Moradi M; Pourangha SM; Nayyeri V; Soleimani M; Ramahi OM
    Opt Express; 2019 May; 27(10):15018-15031. PubMed ID: 31163941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Stability of Modified Lorentz FDTD Unified From Various Dispersion Models.
    Park J; Jung KY
    Opt Express; 2021 Jul; 29(14):21639-21654. PubMed ID: 34265947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method.
    Singh G; Tan EL; Chen ZN
    Opt Lett; 2011 Apr; 36(8):1494-6. PubMed ID: 21499401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.
    Wang XH; Yin WY; Chen ZZ
    Opt Express; 2013 Sep; 21(18):20565-76. PubMed ID: 24103929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex-envelope alternating-direction-implicit FDTD method for simulating active photonic devices with semiconductor/solid-state media.
    Singh G; Ravi K; Wang Q; Ho ST
    Opt Lett; 2012 Jun; 37(12):2361-3. PubMed ID: 22739908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method.
    Heh DY; Tan EL
    Biomed Opt Express; 2011 Apr; 2(5):1169-83. PubMed ID: 21559129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise-Integration Time-Domain Formulation for Optical Periodic Media.
    Sirvent-Verdú JJ; Francés J; Márquez A; Neipp C; Álvarez M; Puerto D; Gallego S; Pascual I
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The HIE-FDTD Method for Simulating Dispersion Media Represented by Drude, Debye, and Lorentz Models.
    Chen J; Mou C
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.
    Zhao S
    Opt Lett; 2011 Aug; 36(16):3245-7. PubMed ID: 21847222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient HIE-FDTD method for designing a dual-band anisotropic terahertz absorption structure.
    Zhou Y; Li H; Li L; Cai Y; Zeyde K; Han X
    Opt Express; 2021 Jun; 29(12):18611-18623. PubMed ID: 34154114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional method for unconditionally stable elastic wave simulations.
    Shao Y; An M; Wang S
    J Acoust Soc Am; 2014 Oct; 136(4):1682-91. PubMed ID: 25324071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fast alternating direction implicit algorithm for geometric flow equations in biomolecular surface generation.
    Tian W; Zhao S
    Int J Numer Method Biomed Eng; 2014 Apr; 30(4):490-516. PubMed ID: 24574191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viable Three-Dimensional Medical Microwave Tomography: Theory and Numerical Experiments.
    Fang Q; Meaney PM; Paulsen KD
    IEEE Trans Antennas Propag; 2010 Feb; 58(2):449-458. PubMed ID: 20352084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-opals interaction modeling by direct numerical solution of Maxwell's equations.
    Vaccari A; Lesina AC; Cristoforetti L; Chiappini A; Crema L; Calliari L; Ramunno L; Berini P; Ferrari M
    Opt Express; 2014 Nov; 22(22):27739-49. PubMed ID: 25401918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implicit high-order unconditionally stable complex envelope algorithm for solving the time-dependent Maxwell's equations.
    Chen S; Zang W; Schülzgen A; Liu J; Han L; Zeng Y; Tian J; Song F; Moloney JV; Peyghambarian N
    Opt Lett; 2008 Dec; 33(23):2755-7. PubMed ID: 19037416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Narrow-Bandpass One-Step Leapfrog Hybrid Implicit-Explicit Algorithm with Convolutional Boundary Condition for Its Applications in Sensors.
    Wang Y; Xie Y; Jiang H; Wu P
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discontinuous Galerkin time domain analysis of electromagnetic scattering from dispersive periodic nanostructures at oblique incidence.
    Bao H; Kang L; Campbell SD; Werner DH
    Opt Express; 2019 Apr; 27(9):13116-13128. PubMed ID: 31052841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.