These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25835851)

  • 1. Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry.
    Macleod NA; Molero F; Weidmann D
    Opt Express; 2015 Jan; 23(2):912-28. PubMed ID: 25835851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Middle infrared active coherent laser spectrometer for standoff detection of chemicals.
    Macleod NA; Rose R; Weidmann D
    Opt Lett; 2013 Oct; 38(19):3708-11. PubMed ID: 24081032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design.
    Zhou W; Bandyopadhyay N; Wu D; McClintock R; Razeghi M
    Sci Rep; 2016 Jun; 6():25213. PubMed ID: 27270634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers.
    Kilgus J; Duswald K; Langer G; Brandstetter M
    Appl Spectrosc; 2018 Apr; 72(4):634-642. PubMed ID: 29164925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widely-Tunable Quantum Cascade-Based Sources for the Development of Optical Gas Sensors.
    Zéninari V; Vallon R; Bizet L; Jacquemin C; Aoust G; Maisons G; Carras M; Parvitte B
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser.
    Sun J; Deng H; Liu N; Wang H; Yu B; Li J
    Rev Sci Instrum; 2016 Dec; 87(12):123101. PubMed ID: 28040920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution broadband (>100 cm-1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser.
    Weidmann D; Wysocki G
    Opt Express; 2009 Jan; 17(1):248-59. PubMed ID: 19129894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy.
    Sun J; Ding J; Liu N; Yang G; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():532-538. PubMed ID: 29096120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standoff Detection of Oil and Powder Mixtures at 12 Meters Using a Tunable Quantum Cascade Laser-Based System with a Close Focus Telescope and Uncooled Infrared Detector.
    Carter JC; Paul PH; Ottaway JM; Haugen P; Manuel AM
    Appl Spectrosc; 2022 Jan; 76(1):19-27. PubMed ID: 34965744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standoff Detection and Identification of Liquid Chemicals on a Reflective Substrate Using a Wavelength-Tunable Quantum Cascade Laser.
    Park S; Son J; Yu J; Lee J
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standoff chemical plume detection in turbulent atmospheric conditions with a swept-wavelength external cavity quantum cascade laser.
    Phillips MC; Bernacki BE; Harilal SS; Yeak J; Jones RJ
    Opt Express; 2020 Mar; 28(5):7408-7424. PubMed ID: 32225970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 mum.
    Lewicki R; Wysocki G; Kosterev AA; Tittel FK
    Opt Express; 2007 Jun; 15(12):7357-66. PubMed ID: 19547059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm.
    Witinski MF; Blanchard R; Pfluegl C; Diehl L; Li B; Krishnamurthy K; Pein BC; Azimi M; Chen P; Ulu G; Vander Rhodes G; Howle CR; Lee L; Clewes RJ; Williams B; Vakhshoori D
    Opt Express; 2018 Apr; 26(9):12159-12168. PubMed ID: 29716130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Standoff pump-probe photothermal detection of hazardous chemicals.
    Sharma RC; Kumar S; Parmar A; Mann M; Prakash S; Thakur SN
    Sci Rep; 2020 Sep; 10(1):15053. PubMed ID: 32929139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband laser-based mid-IR spectroscopy for analysis of proteins and monitoring of enzyme activity.
    Schwaighofer A; Akhgar CK; Lendl B
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119563. PubMed ID: 33621933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone.
    Chen X; Guo D; Choa FS; Wang CC; Trivedi S; Snyder AP; Ru G; Fan J
    Appl Opt; 2013 Apr; 52(12):2626-32. PubMed ID: 23669670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array.
    Phillips MC; Ho N
    Opt Express; 2008 Feb; 16(3):1836-45. PubMed ID: 18542262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracavity widely-tunable quantum cascade laser spectrometer.
    Brownsword RA; Weidmann D
    Opt Express; 2013 Jan; 21(2):1581-92. PubMed ID: 23389142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy.
    Galli I; Bartalini S; Cancio P; Cappelli F; Giusfredi G; Mazzotti D; Akikusa N; Yamanishi M; De Natale P
    Opt Lett; 2014 Sep; 39(17):5050-3. PubMed ID: 25166071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-optical adaptive control of quantum cascade random lasers.
    Schönhuber S; Bachelard N; Limbacher B; Kainz MA; Andrews AM; Detz H; Strasser G; Darmo J; Rotter S; Unterrainer K
    Nat Commun; 2020 Nov; 11(1):5530. PubMed ID: 33139713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.