BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25835980)

  • 1. On the mechanism of methanol photooxidation to methylformate and carbon dioxide on TiO2: an operando-FTIR study.
    El-Roz M; Bazin P; Daturi M; Thibault-Starzyk F
    Phys Chem Chem Phys; 2015 May; 17(17):11277-83. PubMed ID: 25835980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study.
    Engeldinger J; Richter M; Bentrup U
    Phys Chem Chem Phys; 2012 Feb; 14(7):2183-91. PubMed ID: 22090021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic cross-coupling of methanol and formaldehyde on a rutile TiO2(110) surface.
    Yuan Q; Wu Z; Jin Y; Xu L; Xiong F; Ma Y; Huang W
    J Am Chem Soc; 2013 Apr; 135(13):5212-9. PubMed ID: 23488967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling selectivities in CO
    Wang X; Shi H; Szanyi J
    Nat Commun; 2017 Sep; 8(1):513. PubMed ID: 28894155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of methanol oxidation over Au/catalysts using operando IR spectroscopy: determination of the active sites, intermediate/spectator species, and reaction mechanism.
    Rousseau S; Marie O; Bazin P; Daturi M; Verdier S; Harlé V
    J Am Chem Soc; 2010 Aug; 132(31):10832-41. PubMed ID: 20681717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential photo-oxidation of methanol to methyl formate on TiO2(110).
    Phillips KR; Jensen SC; Baron M; Li SC; Friend CM
    J Am Chem Soc; 2013 Jan; 135(2):574-7. PubMed ID: 23268565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures.
    Liu H; Iglesia E
    J Phys Chem B; 2005 Feb; 109(6):2155-63. PubMed ID: 16851207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of complex organic molecules in methanol and methanol-carbon monoxide ices exposed to ionizing radiation--a combined FTIR and reflectron time-of-flight mass spectrometry study.
    Maity S; Kaiser RI; Jones BM
    Phys Chem Chem Phys; 2015 Feb; 17(5):3081-114. PubMed ID: 25515545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FTIR study of adsorption and surface reactions of N(CH3)3 on TiO2.
    Lien CF; Lin YF; Lin YS; Chen MT; Lin JL
    J Phys Chem B; 2005 Jun; 109(21):10962-8. PubMed ID: 16852335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectron spectroscopic and electronic structure studies of CH(2)O bonding and reactivity on ZnO surfaces: steps in the methanol synthesis reaction.
    Jones PM; May JA; Reitz JB; Solomon EI
    Inorg Chem; 2004 May; 43(11):3349-70. PubMed ID: 15154797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic understanding of the thermal-assisted photocatalytic oxidation of methanol-to-formaldehyde with water vapor over Pt/SrTiO
    Deitermann M; Sato T; Haver Y; Schnegg A; Muhler M; Mei BT
    Phys Chem Chem Phys; 2024 May; 26(20):14960-14969. PubMed ID: 38739165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the reactivity of ZnO and Au/ZnO nanoparticles by methanol adsorption: a TPD and DRIFTS study.
    Kähler K; Holz MC; Rohe M; Strunk J; Muhler M
    Chemphyschem; 2010 Aug; 11(12):2521-9. PubMed ID: 20635374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total oxidation of methanol on Cu(110): a density functional theory study.
    Sakong S; Gross A
    J Phys Chem A; 2007 Sep; 111(36):8814-22. PubMed ID: 17705455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts.
    Wang W; Buchholz A; Seiler M; Hunger M
    J Am Chem Soc; 2003 Dec; 125(49):15260-7. PubMed ID: 14653761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular hydrogen formation from photocatalysis of methanol on TiO2(110).
    Xu C; Yang W; Guo Q; Dai D; Chen M; Yang X
    J Am Chem Soc; 2013 Jul; 135(28):10206-9. PubMed ID: 23819680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent effects on the structural and formyl substrate reactivity properties of a nitrogen/sulfur-ligated zinc hydroxide complex.
    Allred RA; Doyle K; Arif AM; Berreau LM
    Inorg Chem; 2006 May; 45(10):4097-108. PubMed ID: 16676971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorbate coverages and surface reactivity in methanol oxidation over Cu(110): An in situ photoelectron spectroscopy study.
    Günther S; Zhou L; Hävecker M; Knop-Gericke A; Kleimenov E; Schlögl R; Imbihl R
    J Chem Phys; 2006 Sep; 125(11):114709. PubMed ID: 16999503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.