These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 25836034)
1. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Čater M; Fanedl L; Malovrh Š; Marinšek Logar R Bioresour Technol; 2015 Jun; 186():261-269. PubMed ID: 25836034 [TBL] [Abstract][Full Text] [Related]
2. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
3. Influence of anaerobic co-digestion of sewage and brewery sludges on biogas production and sludge quality. Pecharaply A; Parkpian P; Annachhatre AP; Jugsujinda A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):911-23. PubMed ID: 17558772 [TBL] [Abstract][Full Text] [Related]
4. Anaerobic digestion of corn stovers for methane production in a novel bionic reactor. Zhang M; Zhang G; Zhang P; Fan S; Jin S; Wu D; Fang W Bioresour Technol; 2014 Aug; 166():606-9. PubMed ID: 24923659 [TBL] [Abstract][Full Text] [Related]
5. Biotic and abiotic processes contribute to successful anaerobic degradation of cyanide by UASB reactor biomass treating brewery waste water. Novak D; Franke-Whittle IH; Pirc ET; Jerman V; Insam H; Logar RM; Stres B Water Res; 2013 Jul; 47(11):3644-53. PubMed ID: 23726700 [TBL] [Abstract][Full Text] [Related]
6. Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues. Tsapekos P; Kougias PG; Vasileiou SA; Treu L; Campanaro S; Lyberatos G; Angelidaki I Bioresour Technol; 2017 Jun; 234():350-359. PubMed ID: 28340440 [TBL] [Abstract][Full Text] [Related]
7. Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure. Ozbayram EG; Akyol Ç; Ince B; Karakoç C; Ince O J Appl Microbiol; 2018 Feb; 124(2):491-502. PubMed ID: 29240970 [TBL] [Abstract][Full Text] [Related]
8. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield. Martín-González L; Colturato LF; Font X; Vicent T Waste Manag; 2010 Oct; 30(10):1854-9. PubMed ID: 20400285 [TBL] [Abstract][Full Text] [Related]
9. Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Brown D; Li Y Bioresour Technol; 2013 Jan; 127():275-80. PubMed ID: 23131652 [TBL] [Abstract][Full Text] [Related]
10. Enhancing anaerobic digestion of lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment. Hu Y; Hao X; Wang J; Cao Y Waste Manag; 2016 Mar; 49():55-63. PubMed ID: 26712660 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic co-digestion of sewage sludge and food waste. Prabhu MS; Mutnuri S Waste Manag Res; 2016 Apr; 34(4):307-15. PubMed ID: 26879909 [TBL] [Abstract][Full Text] [Related]
12. Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Kafle GK; Kim SH; Sung KI Bioresour Technol; 2013 Jan; 127():326-36. PubMed ID: 23131656 [TBL] [Abstract][Full Text] [Related]
13. Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw. Ferraro A; Dottorini G; Massini G; Mazzurco Miritana V; Signorini A; Lembo G; Fabbricino M Bioresour Technol; 2018 Jul; 260():364-373. PubMed ID: 29649729 [TBL] [Abstract][Full Text] [Related]
14. Treatment of brewery slurry in thermophilic anaerobic sequencing batch reactor. Zupancic GD; Straziscar M; Ros M Bioresour Technol; 2007 Oct; 98(14):2714-22. PubMed ID: 17126547 [TBL] [Abstract][Full Text] [Related]
15. Co-digestion, biostimulation and bioaugmentation to enhance methanation of brewer's spent grain. Goberna M; Camacho Mdel M; Lopez-Abadia JA; García C Waste Manag Res; 2013 Aug; 31(8):805-10. PubMed ID: 23831775 [TBL] [Abstract][Full Text] [Related]
16. Simple yet effective: Microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants. Nagler M; Kozjek K; Etemadi M; Insam H; Podmirseg SM J Biotechnol; 2019 Jul; 300():1-10. PubMed ID: 31082412 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of microbial diversity and methane yield by bacterial bioaugmentation through the anaerobic digestion of Haematococcus pluvialis. Aydin S Appl Microbiol Biotechnol; 2016 Jun; 100(12):5631-7. PubMed ID: 27067588 [TBL] [Abstract][Full Text] [Related]
18. Biogas production from spent rose hips (Rosa canina L.): fraction separation, organic loading and co-digestion with N-rich microbial biomass. Osojnik Črnivec IG; Muri P; Djinović P; Pintar A Bioresour Technol; 2014 Nov; 171():375-83. PubMed ID: 25218210 [TBL] [Abstract][Full Text] [Related]
19. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Lebuhn M; Hanreich A; Klocke M; Schlüter A; Bauer C; Pérez CM Anaerobe; 2014 Oct; 29():10-21. PubMed ID: 24785351 [TBL] [Abstract][Full Text] [Related]
20. Influence of Thermal and Bacterial Pretreatment of Microalgae on Biogas Production in Mesophilic and Thermophilic Conditions. Vidmar B; Marinšek Logar R; Panjičko M; Fanedl L Acta Chim Slov; 2017 Mac; 64(1):227-236. PubMed ID: 28380240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]