These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 25836100)
1. Dispersion engineering of plasmonic nanocomposite for ultrathin broadband optical absorber. Feng P; Li WD; Zhang W Opt Express; 2015 Feb; 23(3):2328-38. PubMed ID: 25836100 [TBL] [Abstract][Full Text] [Related]
2. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790 [TBL] [Abstract][Full Text] [Related]
3. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers. Butun S; Aydin K Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029 [TBL] [Abstract][Full Text] [Related]
4. Broadband perfect absorber based on one ultrathin layer of refractory metal. Deng H; Li Z; Stan L; Rosenmann D; Czaplewski D; Gao J; Yang X Opt Lett; 2015 Jun; 40(11):2592-5. PubMed ID: 26030565 [TBL] [Abstract][Full Text] [Related]
7. Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber. Hubarevich A; Kukhta A; Demir HV; Sun X; Wang H Opt Express; 2015 Apr; 23(8):9753-61. PubMed ID: 25969014 [TBL] [Abstract][Full Text] [Related]
8. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Li Z; Palacios E; Butun S; Kocer H; Aydin K Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563 [TBL] [Abstract][Full Text] [Related]
9. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions. Matsumori K; Fujimura R Opt Lett; 2018 Jun; 43(12):2981-2984. PubMed ID: 29905739 [TBL] [Abstract][Full Text] [Related]
10. Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects. Tittl A; Harats MG; Walter R; Yin X; Schäferling M; Liu N; Rapaport R; Giessen H ACS Nano; 2014 Oct; 8(10):10885-92. PubMed ID: 25251075 [TBL] [Abstract][Full Text] [Related]
11. Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane. Dayal G; Ramakrishna SA Opt Express; 2014 Jun; 22(12):15104-10. PubMed ID: 24977603 [TBL] [Abstract][Full Text] [Related]
12. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure. Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760 [TBL] [Abstract][Full Text] [Related]
13. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics. Choi M; Kang G; Shin D; Barange N; Lee CW; Ko DH; Kim K ACS Appl Mater Interfaces; 2016 May; 8(20):12997-3008. PubMed ID: 27160410 [TBL] [Abstract][Full Text] [Related]
14. Tuning the dielectric properties of metallic-nanoparticle/elastomer composites by strain. Gaiser P; Binz J; Gompf B; Berrier A; Dressel M Nanoscale; 2015 Mar; 7(10):4566-71. PubMed ID: 25687891 [TBL] [Abstract][Full Text] [Related]
15. Double-sided polarization-independent plasmonic absorber at near-infrared region. Dai S; Zhao D; Li Q; Qiu M Opt Express; 2013 Jun; 21(11):13125-33. PubMed ID: 23736566 [TBL] [Abstract][Full Text] [Related]
16. Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure. Aalizadeh M; Khavasi A; Butun B; Ozbay E Sci Rep; 2018 Jun; 8(1):9162. PubMed ID: 29907773 [TBL] [Abstract][Full Text] [Related]
17. Omnidirectional, polarization-independent, ultra-broadband metamaterial perfect absorber using field-penetration and reflected-wave-cancellation. Zhong YK; Lai YC; Tu MH; Chen BR; Fu SM; Yu P; Lin A Opt Express; 2016 May; 24(10):A832-45. PubMed ID: 27409956 [TBL] [Abstract][Full Text] [Related]