These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 25836118)

  • 1. Size dependence of bandgaps in a two-dimensional plasmonic crystal with a hexagonal lattice.
    Saito H; Yamamoto N
    Opt Express; 2015 Feb; 23(3):2524-40. PubMed ID: 25836118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size dependence of surface plasmon modes in one-dimensional plasmonic crystal cavities.
    Honda M; Yamamoto N
    Opt Express; 2013 May; 21(10):11973-83. PubMed ID: 23736419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confinement of Surface Plasmon Polaritons by Heterostructures of Plasmonic Crystals.
    Saito H; Mizuma S; Yamamoto N
    Nano Lett; 2015 Oct; 15(10):6789-93. PubMed ID: 26414000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size dependence of band structures in a two-dimensional plasmonic crystal with a square lattice.
    Yamamoto N; Saito H
    Opt Express; 2014 Dec; 22(24):29761-77. PubMed ID: 25606906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence.
    Takeuchi K; Yamamoto N
    Opt Express; 2011 Jun; 19(13):12365-74. PubMed ID: 21716474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size dependence of band-gaps in a one-dimensional plasmonic crystal.
    Watanabe H; Honda M; Yamamoto N
    Opt Express; 2014 Mar; 22(5):5155-65. PubMed ID: 24663855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal.
    Suzuki T; Yamamoto N
    Opt Express; 2009 Dec; 17(26):23664-71. PubMed ID: 20052076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of Light Emission by a Plasmonic Crystal Cavity.
    Saito H; Yamamoto N
    Nano Lett; 2015 Sep; 15(9):5764-9. PubMed ID: 26301432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping optical Bloch modes of a plasmonic square lattice in real and reciprocal spaces using cathodoluminescence spectroscopy.
    Bittorf PH; Davoodi F; Taleb M; Talebi N
    Opt Express; 2021 Oct; 29(21):34328-34340. PubMed ID: 34809226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-order modes of spoof surface plasmonic wave transmission on thin metal film structure.
    Liu X; Feng Y; Zhu B; Zhao J; Jiang T
    Opt Express; 2013 Dec; 21(25):31155-65. PubMed ID: 24514689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion control in plasmonic open nanocavities.
    Zhu X; Zhang J; Xu J; Li H; Wu X; Liao Z; Zhao Q; Yu D
    ACS Nano; 2011 Aug; 5(8):6546-52. PubMed ID: 21749112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon dispersion in hexagonal, honeycomb and kagome plasmonic crystals.
    Tenner VT; de Dood MJ; van Exter MP
    Opt Express; 2016 Dec; 24(26):29624-29633. PubMed ID: 28059349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures.
    Yamamoto N
    Microscopy (Oxf); 2016 Aug; 65(4):282-95. PubMed ID: 27473259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of surface plasmon polaritons near the photonic-bandgap edge for interphotonic band switching devices.
    Onuki T; Ohtera Y; Tokizaki T
    J Microsc; 2008 Mar; 229(Pt 3):447-51. PubMed ID: 18331493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrowband plasmonic excitation on gold hole-array nanostructures observed using spectroscopic ellipsometer.
    Li GX; Wang ZL; Chen SM; Cheah KW
    Opt Express; 2011 Mar; 19(7):6348-53. PubMed ID: 21451662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling rejections of spoof surface plasmon polaritons using metamaterial particles.
    Pan BC; Liao Z; Zhao J; Cui TJ
    Opt Express; 2014 Jun; 22(11):13940-50. PubMed ID: 24921585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct eigenmode analysis of plasmonic modes in metal nanoparticle chain with layered medium.
    Dong JW; Deng ZL
    Opt Lett; 2013 Jul; 38(13):2244-6. PubMed ID: 23811890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamic plasmonic manipulation technique assisted by phase modulation of an incident optical vortex beam.
    Yuan GH; Wang Q; Tan PS; Lin J; Yuan XC
    Nanotechnology; 2012 Sep; 23(38):385204. PubMed ID: 22948098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.
    Xu XG; Jiang JH; Gilburd L; Rensing RG; Burch KS; Zhi C; Bando Y; Golberg D; Walker GC
    ACS Nano; 2014 Nov; 8(11):11305-12. PubMed ID: 25365544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons.
    Bai C; Chen J; Zhang Y; Zhang D; Zhan Q
    Opt Express; 2020 Mar; 28(7):10320-10328. PubMed ID: 32225619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.