BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25836120)

  • 21. Low-loss hollow-core silica/air photonic bandgap fibre.
    Smith CM; Venkataraman N; Gallagher MT; Müller D; West JA; Borrelli NF; Allan DC; Koch KW
    Nature; 2003 Aug; 424(6949):657-9. PubMed ID: 12904788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modal analysis of antiresonant hollow core fibers using S
    Newkirk AV; Antonio-Lopez JE; Anderson J; Alvarez-Aguirre R; Eznaveh ZS; Lopez-Galmiche G; Amezcua-Correa R; Schülzgen A
    Opt Lett; 2016 Jul; 41(14):3277-80. PubMed ID: 27420514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber.
    Suslov D; Komanec M; Numkam Fokoua ER; Dousek D; Zhong A; Zvánovec S; Bradley TD; Poletti F; Richardson DJ; Slavík R
    Sci Rep; 2021 Apr; 11(1):8799. PubMed ID: 33888786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of embedded-core hollow optical fiber.
    Guan C; Tian F; Dai Q; Yuan L
    Opt Express; 2011 Oct; 19(21):20069-78. PubMed ID: 21997017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Composite material hollow antiresonant fibers.
    Belardi W; De Lucia F; Poletti F; Sazio PJ
    Opt Lett; 2017 Jul; 42(13):2535-2538. PubMed ID: 28957278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers.
    Fokoua EN; Poletti F; Richardson DJ
    Opt Express; 2012 Sep; 20(19):20980-91. PubMed ID: 23037221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss.
    Debord B; Alharbi M; Bradley T; Fourcade-Dutin C; Wang YY; Vincetti L; Gérôme F; Benabid F
    Opt Express; 2013 Nov; 21(23):28597-608. PubMed ID: 24514371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate modelling of fabricated hollow-core photonic bandgap fibers.
    Fokoua EN; Sandoghchi SR; Chen Y; Jasion GT; Wheeler NV; Baddela NK; Hayes JR; Petrovich MN; Richardson DJ; Poletti F
    Opt Express; 2015 Sep; 23(18):23117-32. PubMed ID: 26368415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm.
    Sakr H; Chen Y; Jasion GT; Bradley TD; Hayes JR; Mulvad HCH; Davidson IA; Numkam Fokoua E; Poletti F
    Nat Commun; 2020 Nov; 11(1):6030. PubMed ID: 33247139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultralow-loss fusion splicing between antiresonant hollow-core fibers and antireflection-coated single-mode fibers with low return loss.
    Wang C; Yu R; Xiong C; Zhu J; Xiao L
    Opt Lett; 2023 Mar; 48(5):1120-1123. PubMed ID: 36857228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hollow core anti-resonant fiber with split cladding.
    Huang X; Qi W; Ho D; Yong KT; Luan F; Yoo S
    Opt Express; 2016 Apr; 24(7):7670-8. PubMed ID: 27137053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extruded tellurite antiresonant hollow core fiber for Mid-IR operation.
    Ventura A; Hayashi JG; Cimek J; Jasion G; Janicek P; Slimen FB; White N; Fu Q; Xu L; Sakr H; Wheeler NV; Richardson DJ; Poletti F
    Opt Express; 2020 May; 28(11):16542-16553. PubMed ID: 32549474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Review of Antiresonant Hollow-Core Fiber-Assisted Spectroscopy of Gases.
    Jaworski P
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Part-per-billion level photothermal nitric oxide detection at 5.26 µm using antiresonant hollow-core fiber-based heterodyne interferometry.
    Krzempek K
    Opt Express; 2021 Sep; 29(20):32568-32579. PubMed ID: 34615323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber.
    Wang YY; Wheeler NV; Couny F; Roberts PJ; Benabid F
    Opt Lett; 2011 Mar; 36(5):669-71. PubMed ID: 21368943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-nested antiresonant hollow-core fiber with ultralow loss and single-mode guidance.
    Wang Y; Chang W
    Opt Express; 2023 May; 31(11):18250-18264. PubMed ID: 37381539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of structural distortions on the performance of hollow-core photonic bandgap fibers.
    Fokoua EN; Richardson DJ; Poletti F
    Opt Express; 2014 Feb; 22(3):2735-44. PubMed ID: 24663565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm.
    Sampaolo A; Patimisco P; Kriesel JM; Tittel FK; Scamarcio G; Spagnolo V
    Opt Express; 2015 Jan; 23(1):195-204. PubMed ID: 25835666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-line hollow-core fiber-optic bandpass filter.
    Xiong D; Wu X; Abu Hassan MR; Gavara T; Chang W
    Opt Lett; 2021 Dec; 46(23):5918-5921. PubMed ID: 34851923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polarization sensitive optical side leakage radiometry for distributed characterization of anti-resonant hollow-core fibers.
    Sun Y; Liu Q; Deng H; Sheng Y; Gao S; Wang Y; Ding W
    Opt Express; 2024 Feb; 32(5):8059-8068. PubMed ID: 38439472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.