These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25836129)

  • 1. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra.
    Chen JR; Numata K; Wu ST
    Opt Express; 2015 Feb; 23(3):2660-75. PubMed ID: 25836129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra.
    Chen JR; Numata K; Wu ST
    Opt Express; 2014 Oct; 22(21):26055-75. PubMed ID: 25401639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Error analysis for lidar retrievals of atmospheric species from absorption spectra.
    Chen JR; Numata K; Wu ST
    Opt Express; 2019 Dec; 27(25):36487-36504. PubMed ID: 31873427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements.
    Lin B; Ismail S; Wallace Harrison F; Browell EV; Nehrir AR; Dobler J; Moore B; Refaat T; Kooi SA
    Appl Opt; 2013 Oct; 52(29):7062-77. PubMed ID: 24217721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CALIPSO lidar ratio retrieval over the ocean.
    Josset D; Rogers R; Pelon J; Hu Y; Liu Z; Omar A; Zhai PW
    Opt Express; 2011 Sep; 19(19):18696-706. PubMed ID: 21935239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Error reduction methods for integrated-path differential-absorption lidar measurements.
    Chen JR; Numata K; Wu ST
    Opt Express; 2012 Jul; 20(14):15589-609. PubMed ID: 22772254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars.
    Welsh BM; Gardner CS
    Appl Opt; 1989 Oct; 28(19):4141-53. PubMed ID: 20555840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis.
    Weidmann D; Reburn WJ; Smith KM
    Appl Opt; 2007 Oct; 46(29):7162-71. PubMed ID: 17932524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of H2O broadening of O2 A-band transitions and implications for atmospheric remote sensing.
    Vess EM; Wallace CJ; Campbell HM; Awadalla VE; Hodges JT; Long DA; Havey DK
    J Phys Chem A; 2012 Apr; 116(16):4069-73. PubMed ID: 22452330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of noise on lidar data inversion with the backward algorithm.
    Comerón A; Rocadenbosch F; López MA; Rodríguez A; Muñoz C; García-Vizcaíno D; Sicard M
    Appl Opt; 2004 Apr; 43(12):2572-7. PubMed ID: 15119628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical model for Rayleigh-Brillouin line shapes in air.
    Witschas B
    Appl Opt; 2011 Jan; 50(3):267-70. PubMed ID: 21263720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering.
    Witschas B; Lemmerz C; Reitebuch O
    Opt Lett; 2014 Apr; 39(7):1972-5. PubMed ID: 24686652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission.
    Delahaye T; Maxwell SE; Reed ZD; Lin H; Hodges JT; Sung K; Devi VM; Warneke T; Spietz P; Tran H
    J Geophys Res Atmos; 2016 Jun; 121(12):7360-7370. PubMed ID: 27551656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air.
    Witschas B; Vieitez MO; van Duijn EJ; Reitebuch O; van de Water W; Ubachs W
    Appl Opt; 2010 Aug; 49(22):4217-27. PubMed ID: 20676176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman-lidar humidity sounding of the atmospheric boundary-layer.
    Pourny JC; Renaut D; Orszag A
    Appl Opt; 1979 Apr; 18(8):1141-8. PubMed ID: 20208900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.
    Fraczek M; Behrendt A; Schmitt N
    Opt Express; 2013 Jul; 21(14):16398-414. PubMed ID: 23938491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements.
    Vaidyanathan M; Killinger DK
    Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength-locking-free 1.57µm differential absorption lidar for CO₂ sensing.
    Liu H; Chen T; Shu R; Hong G; Zheng L; Ge Y; Hu Y
    Opt Express; 2014 Nov; 22(22):27675-80. PubMed ID: 25401911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple field of view lidar returns from atmospheric aerosols.
    Hutt DL; Bissonnette LR; Durand L
    Appl Opt; 1994 Apr; 33(12):2338-48. PubMed ID: 20885584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere.
    Witschas B; Lemmerz C; Reitebuch O
    Appl Opt; 2012 Sep; 51(25):6207-19. PubMed ID: 22945169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.