These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25836208)

  • 61. Entanglement detection in the vicinity of arbitrary Dicke states.
    Duan LM
    Phys Rev Lett; 2011 Oct; 107(18):180502. PubMed ID: 22107616
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates.
    Ren BC; Long GL
    Sci Rep; 2015 Nov; 5():16444. PubMed ID: 26552898
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Conversion of entangled states with nitrogen-vacancy centers coupled to microtoroidal resonators.
    Ji YQ; Shao XQ; Yi XX
    Opt Express; 2017 Jul; 25(14):15806-15817. PubMed ID: 28789093
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multipartite entangled spatial modes of ultracold atoms generated and controlled by quantum measurement.
    Elliott TJ; Kozlowski W; Caballero-Benitez SF; Mekhov IB
    Phys Rev Lett; 2015 Mar; 114(11):113604. PubMed ID: 25839270
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach.
    Budich JC; Trauzettel B
    Nanotechnology; 2010 Jul; 21(27):274001. PubMed ID: 20571188
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity.
    Luo MX; Li HR; Lai H
    Sci Rep; 2016 Jul; 6():29939. PubMed ID: 27424767
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Quantum illumination based on cavity-optomagnonics system with Kerr nonlinearity.
    Du CZ; Wang DW; Zhao CS; Yang J; Zhou L
    Opt Express; 2023 Aug; 31(17):28308-28319. PubMed ID: 37710888
    [TBL] [Abstract][Full Text] [Related]  

  • 68. One-step quantum secure direct communication.
    Sheng YB; Zhou L; Long GL
    Sci Bull (Beijing); 2022 Feb; 67(4):367-374. PubMed ID: 36546088
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Measuring a photonic qubit without destroying it.
    Pryde GJ; O'Brien JL; White AG; Bartlett SD; Ralph TC
    Phys Rev Lett; 2004 May; 92(19):190402. PubMed ID: 15169391
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Entanglement-Assisted Entanglement Purification.
    Riera-Sàbat F; Sekatski P; Pirker A; Dür W
    Phys Rev Lett; 2021 Jul; 127(4):040502. PubMed ID: 34355942
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Measurement induced entanglement and quantum computation with atoms in optical cavities.
    Sørensen AS; Mølmer K
    Phys Rev Lett; 2003 Aug; 91(9):097905. PubMed ID: 14525213
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator.
    Cheng LY; Wang HF; Zhang S; Yeon KH
    Opt Express; 2013 Mar; 21(5):5988-97. PubMed ID: 23482167
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Determining the dynamics of entanglement.
    Jiménez Farías O; Lombard Latune C; Walborn SP; Davidovich L; Souto Ribeiro PH
    Science; 2009 Jun; 324(5933):1414-7. PubMed ID: 19443736
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Electro-optic analyzer of angular momentum hyperentanglement.
    Wu Z; Chen L
    Sci Rep; 2016 Feb; 6():21856. PubMed ID: 26911530
    [TBL] [Abstract][Full Text] [Related]  

  • 75. One-step generation of multipartite entanglement among nitrogen-vacancy center ensembles.
    Song WL; Yin ZQ; Yang WL; Zhu XB; Zhou F; Feng M
    Sci Rep; 2015 Jan; 5():7755. PubMed ID: 25583623
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Collective multipartite Einstein-Podolsky-Rosen steering: more secure optical networks.
    Wang M; Gong Q; He Q
    Opt Lett; 2014 Dec; 39(23):6703-6. PubMed ID: 25490657
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Interaction-Free Effects Between Distant Atoms.
    Aharonov Y; Cohen E; Elitzur AC; Smolin L
    Found Phys; 2018; 48(1):1-16. PubMed ID: 31997829
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Experimental Demonstration of Quantum Pseudotelepathy.
    Xu JM; Zhen YZ; Yang YX; Cheng ZM; Ren ZC; Chen K; Wang XL; Wang HT
    Phys Rev Lett; 2022 Jul; 129(5):050402. PubMed ID: 35960591
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enhancing the violation of the einstein-podolsky-rosen local realism by quantum hyperentanglement.
    Barbieri M; De Martini F; Mataloni P; Vallone G; Cabello A
    Phys Rev Lett; 2006 Oct; 97(14):140407. PubMed ID: 17155228
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Verifying genuine high-order entanglement.
    Li CM; Chen K; Reingruber A; Chen YN; Pan JW
    Phys Rev Lett; 2010 Nov; 105(21):210504. PubMed ID: 21231278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.