These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25836228)

  • 1. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity.
    Gong Y; Zhang C; Liu QF; Wu Y; Wu H; Rao Y; Peng GD
    Opt Express; 2015 Feb; 23(3):3762-9. PubMed ID: 25836228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graded-index optical fiber tweezers with long manipulation length.
    Gong Y; Huang W; Liu QF; Wu Y; Rao Y; Peng GD; Lang J; Zhang K
    Opt Express; 2014 Oct; 22(21):25267-76. PubMed ID: 25401560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic variable-focus lenses for light manipulation.
    Seow YC; Lim SP; Lee HP
    Lab Chip; 2012 Oct; 12(19):3810-5. PubMed ID: 22885654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining.
    Song J; Lin J; Tang J; Liao Y; He F; Wang Z; Qiao L; Sugioka K; Cheng Y
    Opt Express; 2014 Jun; 22(12):14792-802. PubMed ID: 24977574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator.
    Liu Y; Shi L; Xu X; Zhao P; Wang Z; Pu S; Zhang X
    Lab Chip; 2014 Aug; 14(16):3004-10. PubMed ID: 24941312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber Optofluidic Technology Based on Optical Force and Photothermal Effects.
    Zhang C; Xu B; Gong C; Luo J; Zhang Q; Gong Y
    Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31357458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation into fabrication and optical characteristics of tunable optofluidic microlenses using two-photon polymerization.
    Wang Z; Wu Y; Yu W; Qi D; Bakhtiyari AN; Zheng H
    Opt Express; 2024 Feb; 32(5):7448-7462. PubMed ID: 38439424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization.
    Li Y; Fang Y; Wang J; Wang L; Tang S; Jiang C; Zheng L; Mei Y
    Lab Chip; 2016 Nov; 16(22):4406-4414. PubMed ID: 27752686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherently tunable metalens tweezers for optofluidic particle routing.
    Yin S; He F; Kubo W; Wang Q; Frame J; Green NG; Fang X
    Opt Express; 2020 Dec; 28(26):38949-38959. PubMed ID: 33379453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration.
    Song C; Nguyen NT; Asundi AK; Tan SH
    Opt Lett; 2010 Feb; 35(3):327-9. PubMed ID: 20125710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation.
    Nan F; Yan Z
    Nano Lett; 2018 Nov; 18(11):7400-7406. PubMed ID: 30351963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation optofluidics for large-angle light bending and tuning.
    Yang Y; Chin LK; Tsai JM; Tsai DP; Zheludev NI; Liu AQ
    Lab Chip; 2012 Oct; 12(19):3785-90. PubMed ID: 22868356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile optofluidic ring resonator lasers based on microdroplets.
    Lee W; Luo Y; Zhu Q; Fan X
    Opt Express; 2011 Sep; 19(20):19668-74. PubMed ID: 21996908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field.
    Jonáš A; Pilát Z; Ježek J; Bernatová S; Jedlička P; Aas M; Kiraz A; Zemánek P
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):50657-50667. PubMed ID: 34674523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of aerosols revolving in taper-ring optical traps.
    Liu F; Zhang Z; Fu S; Wei Y; Cheng T; Zhang Q; Wu X
    Opt Lett; 2014 Jan; 39(1):100-3. PubMed ID: 24365832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Optofluidic Imaging System Integrated with Tunable Microlens Arrays.
    Zhong Y; Yu H; Wen Y; Zhou P; Guo H; Zou W; Lv X; Liu L
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11994-12004. PubMed ID: 36655899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings.
    Thio SK; Jiang D; Park SY
    Lab Chip; 2018 Jun; 18(12):1725-1735. PubMed ID: 29726880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams.
    Yang Y; Liu AQ; Lei L; Chin LK; Ohl CD; Wang QJ; Yoon HS
    Lab Chip; 2011 Sep; 11(18):3182-7. PubMed ID: 21826360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment.
    Gong Y; Ye AY; Wu Y; Rao YJ; Yao Y; Xiao S
    Opt Express; 2013 Jul; 21(13):16181-90. PubMed ID: 23842403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastomer based tunable optofluidic devices.
    Song W; Vasdekis AE; Psaltis D
    Lab Chip; 2012 Oct; 12(19):3590-7. PubMed ID: 22864365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.