These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25836434)

  • 1. Raman shift and strain effect in high-Q photonic crystal silicon nanocavity.
    Yamashita D; Takahashi Y; Asano T; Noda S
    Opt Express; 2015 Feb; 23(4):3951-9. PubMed ID: 25836434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1.2-µm-band ultrahigh-Q photonic crystal nanocavities and their potential for Raman silicon lasers.
    Okada H; Fujimoto M; Tanaka N; Saito Y; Asano T; Noda S; Takahashi Y
    Opt Express; 2021 Jul; 29(15):24396-24410. PubMed ID: 34614686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Q photonic nanocavity in a two-dimensional photonic crystal.
    Akahane Y; Asano T; Song BS; Noda S
    Nature; 2003 Oct; 425(6961):944-7. PubMed ID: 14586465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration.
    Takahashi Y; Tanaka Y; Hagino H; Sugiya T; Sato Y; Asano T; Noda S
    Opt Express; 2009 Sep; 17(20):18093-102. PubMed ID: 19907599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform.
    Ooka Y; Tetsumoto T; Fushimi A; Yoshiki W; Tanabe T
    Sci Rep; 2015 Jun; 5():11312. PubMed ID: 26086849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of multiple photon absorption in a SiC photonic crystal nanocavity operating at 1.55 μm.
    Yamada S; Song BS; Upham J; Asano T; Tanaka Y; Noda S
    Opt Express; 2012 Jul; 20(14):14789-96. PubMed ID: 22772174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure.
    Song BS; Nagashima T; Asano T; Noda S
    Appl Opt; 2009 Sep; 48(26):4899-903. PubMed ID: 19745851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies.
    Ashida K; Okano M; Ohtsuka M; Seki M; Yokoyama N; Koshino K; Mori M; Asano T; Noda S; Takahashi Y
    Opt Express; 2017 Jul; 25(15):18165-18174. PubMed ID: 28789305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator.
    Lee C; Thillaigovindan J
    Appl Opt; 2009 Apr; 48(10):1797-803. PubMed ID: 19340132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-100-nW-threshold Raman silicon laser designed by a machine-learning method that optimizes the product of the cavity Q-factors.
    Kawakatsu T; Asano T; Noda S; Takahashi Y
    Opt Express; 2021 May; 29(11):17053-17068. PubMed ID: 34154256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic crystal nanocavity with a Q-factor of ~9 million.
    Sekoguchi H; Takahashi Y; Asano T; Noda S
    Opt Express; 2014 Jan; 22(1):916-24. PubMed ID: 24515051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic control of the Q factor in a photonic crystal nanocavity.
    Tanaka Y; Upham J; Nagashima T; Sugiya T; Asano T; Noda S
    Nat Mater; 2007 Nov; 6(11):862-5. PubMed ID: 17767163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in situ platform for the investigation of Raman shift in micro-scale silicon structures as a function of mechanical stress and temperature increase.
    Gan M; Tomar V
    Rev Sci Instrum; 2014 Jan; 85(1):013902. PubMed ID: 24517777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic crystal nanocavity laser in an optically very thick slab.
    Kim SH; Huang J; Scherer A
    Opt Lett; 2012 Feb; 37(4):488-90. PubMed ID: 22344082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant enhancement of the effective Raman susceptibility in metasurfaces made of silicon photonic crystal nanocavities.
    Ren Q; You JW; Panoiu NC
    Opt Express; 2018 Nov; 26(23):30383-30392. PubMed ID: 30469912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reversibly tunable photonic crystal nanocavity laser using photochromic thin film.
    Sridharan D; Bose R; Kim H; Solomon GS; Waks E
    Opt Express; 2011 Mar; 19(6):5551-8. PubMed ID: 21445193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity.
    Tanabe T; Nishiguchi K; Kuramochi E; Notomi M
    Opt Express; 2009 Dec; 17(25):22505-13. PubMed ID: 20052175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation.
    Chen CJ; Zheng J; Gu T; McMillan JF; Yu M; Lo GQ; Kwong DL; Wong CW
    Opt Express; 2011 Jun; 19(13):12480-9. PubMed ID: 21716487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic crystal nanocavity with a Q factor exceeding eleven million.
    Asano T; Ochi Y; Takahashi Y; Kishimoto K; Noda S
    Opt Express; 2017 Feb; 25(3):1769-1777. PubMed ID: 29519030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic crystal nanofishbone nanocavity.
    Lu TW; Lee PT
    Opt Lett; 2013 Aug; 38(16):3129-32. PubMed ID: 24104667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.