These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25836484)

  • 1. Size-dependence of the Lorentz friction for surface plasmons in metallic nanospheres.
    Jacak WA
    Opt Express; 2015 Feb; 23(4):4472-81. PubMed ID: 25836484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact solution for velocity of plasmon-polariton in metallic nano-chain.
    Jacak WA
    Opt Express; 2014 Aug; 22(16):18958-65. PubMed ID: 25320982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Polariton Properties in Metallic Nanosphere Chains.
    Jacak WA; Krasnyj J; Chepok A
    Materials (Basel); 2015 Jun; 8(7):3910-3937. PubMed ID: 28793415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlocal response of metallic nanospheres probed by light, electrons, and atoms.
    Christensen T; Yan W; Raza S; Jauho AP; Mortensen NA; Wubs M
    ACS Nano; 2014 Feb; 8(2):1745-58. PubMed ID: 24437380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres.
    Derkachova A; Kolwas K; Demchenko I
    Plasmonics; 2016; 11():941-951. PubMed ID: 27340380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the friction between single polystyrene nanospheres and silicon surface using atomic force microscopy.
    Guo D; Li J; Chang L; Luo J
    Langmuir; 2013 Jun; 29(23):6920-5. PubMed ID: 23725519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial nonlocality effect on the surface plasmon propagation in plasmonic nanospheres waveguide.
    Mir M
    J Phys Condens Matter; 2023 Mar; 35(20):. PubMed ID: 36867884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impurity-induced plasmon damping in individual cobalt-doped hollow Au nanoshells.
    Thibodeaux CA; Kulkarni V; Chang WS; Neumann O; Cao Y; Brinson B; Ayala-Orozco C; Chen CW; Morosan E; Link S; Nordlander P; Halas NJ
    J Phys Chem B; 2014 Dec; 118(49):14056-61. PubMed ID: 24921160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms.
    Zorić I; Zäch M; Kasemo B; Langhammer C
    ACS Nano; 2011 Apr; 5(4):2535-46. PubMed ID: 21438568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Plasmon Polariton Propagation Along Metallic Nano-Chain.
    Jacak WA
    Plasmonics; 2013; 8(3):1317-1333. PubMed ID: 23956703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions.
    Gunnarsson L; Rindzevicius T; Prikulis J; Kasemo B; Käll M; Zou S; Schatz GC
    J Phys Chem B; 2005 Jan; 109(3):1079-87. PubMed ID: 16851063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations.
    Kvasnicka P; Homola J
    Biointerphases; 2008 Sep; 3(3):FD4-11. PubMed ID: 20408699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of LC resonance wavelength on size of silver split-ring resonator fabricated by nanosphere lithography.
    Okamoto T; Otsuka T; Sato S; Fukuta T; Haraguchi M
    Opt Express; 2012 Oct; 20(21):24059-67. PubMed ID: 23188373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlocal screening of plasmons in graphene by semiconducting and metallic substrates: first-principles calculations.
    Yan J; Thygesen KS; Jacobsen KW
    Phys Rev Lett; 2011 Apr; 106(14):146803. PubMed ID: 21561211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphoton photoelectron emission microscopy of single Au nanorods: combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    Phys Chem Chem Phys; 2013 Jul; 15(26):10616-27. PubMed ID: 23417070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bandwidth of quantized surface plasmons: competition between radiative and nonradiative damping effects.
    Moustafa S; Zayed MK; Ahmed M; Fares H
    Phys Chem Chem Phys; 2024 Jan; 26(3):1994-2006. PubMed ID: 38116761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blue-shift of surface plasmon resonance in a metal nanoslit array structure.
    Jung YS; Wuenschell J; Kim HK; Kaur P; Waldeck DH
    Opt Express; 2009 Aug; 17(18):16081-91. PubMed ID: 19724608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable plasmon coupling in distance-controlled gold nanoparticles.
    Lange H; Juárez BH; Carl A; Richter M; Bastús NG; Weller H; Thomsen C; von Klitzing R; Knorr A
    Langmuir; 2012 Jun; 28(24):8862-6. PubMed ID: 22416809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.