These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25836491)

  • 1. Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method.
    Niu J; Luo M; Zhu J; Liu QH
    Opt Express; 2015 Feb; 23(4):4539-51. PubMed ID: 25836491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating light absorption of graphene using plasmonic nanoparticles.
    Zhu J; Liu QH; Lin T
    Nanoscale; 2013 Sep; 5(17):7785-9. PubMed ID: 23864077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic-enhanced perovskite-graphene hybrid photodetectors.
    Sun Z; Aigouy L; Chen Z
    Nanoscale; 2016 Apr; 8(14):7377-83. PubMed ID: 26882839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The Analysis of Microcavity-Integrated Graphene Photodetector’s SNR Based on 1.06 μm].
    Liang ZJ; Liu HX; Liu KM; Niu YX; Yin YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):356-60. PubMed ID: 30264961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocurrent in graphene harnessed by tunable intrinsic plasmons.
    Freitag M; Low T; Zhu W; Yan H; Xia F; Avouris P
    Nat Commun; 2013; 4():1951. PubMed ID: 23727714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering.
    Zhang J; Zhu Z; Liu W; Yuan X; Qin S
    Nanoscale; 2015 Aug; 7(32):13530-6. PubMed ID: 26201255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of tuning graphene plasmonic behaviors by ferroelectric domains for self-driven infrared photodetector applications.
    Guo J; Liu Y; Lin Y; Tian Y; Zhang J; Gong T; Cheng T; Huang W; Zhang X
    Nanoscale; 2019 Nov; 11(43):20868-20875. PubMed ID: 31657407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergetically enhanced near-infrared photoresponse of reduced graphene oxide by upconversion and gold plasmon.
    Niu W; Chen H; Chen R; Huang J; Palaniappan A; Sun H; Liedberg BG; Tok AI
    Small; 2014 Sep; 10(18):3637-43. PubMed ID: 24821086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths.
    Lu H; Cumming BP; Gu M
    Opt Lett; 2015 Aug; 40(15):3647-50. PubMed ID: 26258379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable light trapping and absorption enhancement with graphene ring arrays.
    Xiao S; Wang T; Liu Y; Xu C; Han X; Yan X
    Phys Chem Chem Phys; 2016 Sep; 18(38):26661-26669. PubMed ID: 27722336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Effects of Plasmonics and Electron Trapping in Graphene Short-Wave Infrared Photodetectors with Ultrahigh Responsivity.
    Chen Z; Li X; Wang J; Tao L; Long M; Liang SJ; Ang LK; Shu C; Tsang HK; Xu JB
    ACS Nano; 2017 Jan; 11(1):430-437. PubMed ID: 28005326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons.
    Lu H; Gan X; Jia B; Mao D; Zhao J
    Opt Lett; 2016 Oct; 41(20):4743-4746. PubMed ID: 28005882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide Angle Dynamically Tunable Enhanced Infrared Absorption on Large-Area Nanopatterned Graphene.
    Safaei A; Chandra S; Leuenberger MN; Chanda D
    ACS Nano; 2019 Jan; 13(1):421-428. PubMed ID: 30525437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schottky graphene/Si photodetector based on metal-dielectric hybrid hollow-core photonic crystal fibers.
    Hosseinifar M; Ahmadi V; Ebnali-Heidari M
    Opt Lett; 2017 Dec; 42(24):5066-5069. PubMed ID: 29240138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance.
    Jiang X; Wang T; Xiao S; Yan X; Cheng L
    Opt Express; 2017 Oct; 25(22):27028-27036. PubMed ID: 29092184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of waveguide-integrated graphene devices for photonic gas sensing.
    Cheng Z; Goda K
    Nanotechnology; 2016 Dec; 27(50):505206. PubMed ID: 27855120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel architecture of plasmon excitation based on self-assembled nanoparticle arrays for photovoltaics.
    Jo H; Sohn A; Shin KS; Kumar B; Kim JH; Kim DW; Kim SW
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1030-5. PubMed ID: 24328244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping.
    Xiong F; Zhang J; Zhu Z; Yuan X; Qin S
    Sci Rep; 2015 Nov; 5():16998. PubMed ID: 26582477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-ruthenium complex hybrid photodetectors with ultrahigh photoresponsivity.
    Liu X; Lee EK; Oh JH
    Small; 2014 Sep; 10(18):3700-6. PubMed ID: 24861217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced tunable plasmonic resonance in crumpled graphene resonators loaded with gate tunable metamaterials.
    Khattak MI; Ullah Z; Al-Hasan M; Sheikh F
    Opt Express; 2020 Dec; 28(25):37860-37878. PubMed ID: 33379612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.