BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 25836586)

  • 1. Analysis of 4D myocardial wall motion during early stages of chick heart development.
    Midgett M; Rugonyi S
    Methods Mol Biol; 2015; 1299():191-212. PubMed ID: 25836586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo assessment of wall strain in embryonic chick heart by spectral domain optical coherence tomography.
    Ma Z; Dou S; Zhao Y; Guo C; Liu J; Wang Q; Xu T; Wang RK; Wang Y
    Appl Opt; 2015 Nov; 54(31):9253-7. PubMed ID: 26560579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo gated 4D imaging of the embryonic heart using optical coherence tomography.
    Jenkins MW; Chughtai OQ; Basavanhally AN; Watanabe M; Rollins AM
    J Biomed Opt; 2007; 12(3):030505. PubMed ID: 17614708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart.
    Liu A; Wang R; Thornburg KL; Rugonyi S
    J Biomed Opt; 2009; 14(4):044020. PubMed ID: 19725731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography.
    Wang S; Singh M; Lopez AL; Wu C; Raghunathan R; Schill A; Li J; Larin KV; Larina IV
    Opt Lett; 2015 Oct; 40(20):4791-4. PubMed ID: 26469621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography.
    Li P; Yin X; Shi L; Rugonyi S; Wang RK
    J Biomed Opt; 2012 Sep; 17(9):96006-1. PubMed ID: 23085907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotationally acquired four-dimensional optical coherence tomography of embryonic chick hearts using retrospective gating on the common central A-scan.
    Happel CM; Thommes J; Thrane L; Männer J; Ortmaier T; Heimann B; Yelbuz TM
    J Biomed Opt; 2011 Sep; 16(9):096007. PubMed ID: 21950921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation.
    Rugonyi S; Shaut C; Liu A; Thornburg K; Wang RK
    Phys Med Biol; 2008 Sep; 53(18):5077-91. PubMed ID: 18723935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherence tomography provides an ability to assess mechanical property of cardiac wall of developing outflow tract in embryonic heart in vivo.
    Li P; Wang RK
    J Biomed Opt; 2012 Dec; 17(12):120502. PubMed ID: 23208209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of tissue velocity data from cardiac wall motion measurements with myocardial fiber tracking: principles and implications for cardiac fiber structures.
    Jung BA; Kreher BW; Markl M; Hennig J
    Eur J Cardiothorac Surg; 2006 Apr; 29 Suppl 1():S158-64. PubMed ID: 16564182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography.
    Li P; Liu A; Shi L; Yin X; Rugonyi S; Wang RK
    Phys Med Biol; 2011 Nov; 56(22):7081-92. PubMed ID: 22016198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved reconstructions and generalized filtered back projection for optical projection tomography.
    Birk UJ; Darrell A; Konstantinides N; Sarasa-Renedo A; Ripoll J
    Appl Opt; 2011 Feb; 50(4):392-8. PubMed ID: 21283227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative three-dimensional analysis of embryonic chick morphogenesis via microcomputed tomography.
    Kim JS; Min J; Recknagel AK; Riccio M; Butcher JT
    Anat Rec (Hoboken); 2011 Jan; 294(1):1-10. PubMed ID: 21207522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional correction of conduction velocity in the embryonic heart using integrated optical mapping and optical coherence tomography.
    Ma P; Wang YT; Gu S; Watanabe M; Jenkins MW; Rollins AM
    J Biomed Opt; 2014; 19(7):76004. PubMed ID: 24996663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal deep learning methods for motion estimation using 4D OCT image data.
    Bengs M; Gessert N; Schlüter M; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):943-952. PubMed ID: 32445128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4D Dark blood arterial wall magnetic resonance imaging: methodology and demonstration in the carotid arteries.
    Koktzoglou I
    Magn Reson Med; 2013 Apr; 69(4):956-65. PubMed ID: 23400824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion-based structure separation for label-free, high-speed, 3D cardiac microscopy.
    Bhat S; Ohn J; Liebling M
    IEEE Trans Image Process; 2012 Aug; 21(8):3638-47. PubMed ID: 22531765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating.
    Uribe S; Beerbaum P; Sørensen TS; Rasmusson A; Razavi R; Schaeffter T
    Magn Reson Med; 2009 Oct; 62(4):984-92. PubMed ID: 19672940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing repeatability of 3D Doppler indices obtained by static 3D and STIC power Doppler: a combined in-vivo/in-vitro flow phantom study.
    Miyague AH; Raine-Fenning NJ; Polanski L; Martinez LH; Araujo Júnior E; Pavan TZ; Martins WP
    Ultrasound Obstet Gynecol; 2013 Nov; 42(5):571-6. PubMed ID: 23362022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac motion analysis to improve pacing site selection in CRT.
    Huang H; Shen L; Zhang R; Makedon F; Hettleman B; Pearlman J
    Acad Radiol; 2006 Sep; 13(9):1124-34. PubMed ID: 16935724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.