These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement. Bian Y; Zheng Z; Liu Y; Zhu J; Zhou T Opt Express; 2010 Nov; 18(23):23756-62. PubMed ID: 21164719 [TBL] [Abstract][Full Text] [Related]
46. Efficient second-harmonic generation in nonlinear plasmonic waveguide. Lu FF; Li T; Hu XP; Cheng QQ; Zhu SN; Zhu YY Opt Lett; 2011 Sep; 36(17):3371-3. PubMed ID: 21886214 [TBL] [Abstract][Full Text] [Related]
47. Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout. Udagedara IB; Rukhlenko ID; Premaratne M Opt Express; 2011 Oct; 19(21):19973-86. PubMed ID: 21997007 [TBL] [Abstract][Full Text] [Related]
48. Extraordinary acoustic transmission through a 1D grating with very narrow apertures. Lu MH; Liu XK; Feng L; Li J; Huang CP; Chen YF; Zhu YY; Zhu SN; Ming NB Phys Rev Lett; 2007 Oct; 99(17):174301. PubMed ID: 17995334 [TBL] [Abstract][Full Text] [Related]
49. Coupling between surface plasmon polaritons and transverse electric polarized light via L-shaped nano-apertures. Yang J; Hu C; Wen Q; Zhao C; Zhang J Opt Lett; 2015 Mar; 40(6):978-81. PubMed ID: 25768161 [TBL] [Abstract][Full Text] [Related]
50. Partial coherence and polarization of a two-mode surface-plasmon polariton field at a metallic nanoslab. Norrman A; Setälä T; Friberg AT Opt Express; 2015 Aug; 23(16):20696-714. PubMed ID: 26367922 [TBL] [Abstract][Full Text] [Related]
52. Highly efficient on-chip excitation of orthogonal-polarized gap plasmons for a dense polarization multiplexing circuit. Ota M; Fukuda M Opt Express; 2018 Aug; 26(17):21778-21783. PubMed ID: 30130879 [TBL] [Abstract][Full Text] [Related]
53. Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM. Word RC; Fitzgerald JP; Könenkamp R Opt Express; 2013 Dec; 21(25):30507-20. PubMed ID: 24514628 [TBL] [Abstract][Full Text] [Related]
54. Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography. Junesch J; Sannomiya T; Dahlin AB ACS Nano; 2012 Nov; 6(11):10405-15. PubMed ID: 23098107 [TBL] [Abstract][Full Text] [Related]
55. Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides. Mendlovic D; Goldenberg E; Ruschin S; Dror J; Croitoru N Appl Opt; 1989 Feb; 28(4):708-12. PubMed ID: 20548546 [TBL] [Abstract][Full Text] [Related]
56. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications. Yue W; Wang Z; Yang Y; Li J; Wu Y; Chen L; Ooi B; Wang X; Zhang XX Nanoscale; 2014 Jul; 6(14):7917-23. PubMed ID: 24898441 [TBL] [Abstract][Full Text] [Related]
57. Surface plasmon polaritons locally excited on the ridges of metallic gratings. Wang B; Lalanne P J Opt Soc Am A Opt Image Sci Vis; 2010 Jun; 27(6):1432-41. PubMed ID: 20508713 [TBL] [Abstract][Full Text] [Related]
58. Cross conversion between surface plasmon polaritons and quasicylindrical waves. Yang XY; Liu HT; Lalanne P Phys Rev Lett; 2009 Apr; 102(15):153903. PubMed ID: 19518633 [TBL] [Abstract][Full Text] [Related]
59. Extraordinary terahertz transmission in superconducting subwavelength hole array. Wu J; Dai H; Wang H; Jin B; Jia T; Zhang C; Cao C; Chen J; Kang L; Xu W; Wu P Opt Express; 2011 Jan; 19(2):1101-6. PubMed ID: 21263649 [TBL] [Abstract][Full Text] [Related]
60. Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures. Yirmiyahu Y; Niv A; Biener G; Kleiner V; Hasman E Opt Express; 2007 Oct; 15(20):13404-14. PubMed ID: 19550609 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]