These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25836820)

  • 61. Numerical simulations on a nanosecond-pulse exciplex pumped cesium vapor laser.
    Su C; Xu X; Huang J; Pan B
    Opt Express; 2020 Aug; 28(18):26302-26312. PubMed ID: 32906904
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Efficient corner-pumped Nd:YAG/YAG composite slab 1.1 µm laser.
    Liu H; Liu Q; Gong M
    Opt Express; 2010 Sep; 18(19):19603-11. PubMed ID: 20940856
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers.
    Markosyan AH
    Opt Express; 2018 Jan; 26(1):488-495. PubMed ID: 29328325
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characteristics of a dye laser amplifier transversely pumped by copper vapor lasers with a two-dimensional calculation model.
    Sugiyama A; Nakayama T; Kato M; Maruyama Y
    Appl Opt; 1997 Aug; 36(24):5849-54. PubMed ID: 18259416
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modeling of pulsed K diode pumped alkali laser: Analysis of the experimental results.
    Auslender I; Barmashenko B; Rosenwaks S; Zhdanov B; Rotondaro M; Knize RJ
    Opt Express; 2015 Aug; 23(16):20986-96. PubMed ID: 26367951
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Analytical model of a diode-pumped cesium laser for investigation of upper-state mixing and quenching reactions.
    Endo M; Nagaoka H; Wani F
    Opt Express; 2023 May; 31(10):15423-15437. PubMed ID: 37157644
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Flowing-gas diode pumped alkali lasers: theoretical analysis of transonic vs supersonic and subsonic devices.
    Yacoby E; Waichman K; Sadot O; Barmashenko BD; Rosenwaks S
    Opt Express; 2016 Mar; 24(5):5469-5477. PubMed ID: 29092370
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Real-time measurement of temperature rise in a pulsed diode pumped rubidium vapor laser by potassium tracing atom based absorption spectroscopy.
    Zhao X; Yang Z; Hua W; Wang H; Xu X
    Opt Express; 2017 Mar; 25(6):5841-5851. PubMed ID: 28381056
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Removal of Rb(6(2)P) by H(2), CH(4), and C(2)H(6).
    Azyazov VN; Bresler SM; Torbin AP; Mebel AM; Heaven MC
    Opt Lett; 2016 Feb; 41(4):669-72. PubMed ID: 26872159
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Measurements of cesium mixing and quenching cross sections in methane gas: understanding sources of heating in cesium vapor lasers.
    Gearba MA; Rich PH; Zimmerman LA; Rotondaro MD; Zhdanov BV; Knize RJ; Sell JF
    Opt Express; 2019 Apr; 27(7):9676-9683. PubMed ID: 31045116
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Stimulated emission in optically pumped atomic-copper vapor.
    Kim JJ; Sung N
    Opt Lett; 1987 Nov; 12(11):885-7. PubMed ID: 19741904
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Examination of potassium diode pumped alkali laser using He, Ar, CH
    Zhdanov BV; Rotondaro MD; Shaffer MK; Knize RJ
    Opt Express; 2017 Nov; 25(24):30793-30798. PubMed ID: 29221105
    [TBL] [Abstract][Full Text] [Related]  

  • 73. From amplified spontaneous emission to laser oscillation: dynamics in a short-cavity polymer laser.
    van den Berg SA; van Schoonderwoerd den Bezemer RH; Schoo HF; 't Hooft GW; Eliel ER
    Opt Lett; 1999 Dec; 24(24):1847-9. PubMed ID: 18079951
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser.
    Yablon J; Zhou Z; Zhou M; Wang Y; Tseng S; Shahriar MS
    Opt Express; 2016 Nov; 24(24):27444-27456. PubMed ID: 27906317
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Efficient two-photon-resonant frequency conversion in mercury: the effects of amplified spontaneous emission.
    Smith AV; Hadley GR; Esherick P; Alford WJ
    Opt Lett; 1987 Sep; 12(9):708-10. PubMed ID: 19741847
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology.
    Bartschat K; Kushner MJ
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7026-34. PubMed ID: 27317740
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pressure dependence of the small-signal gain and saturation intensity of a copper vapor laser.
    Behrouzinia S; Sadighi R; Parvin P
    Appl Opt; 2003 Feb; 42(6):1013-8. PubMed ID: 12617218
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Simple model for amplified spontaneous emission in a Ti:A1(2)O(3) amplifier.
    Schulz PA; Wall KF; Aggarwal RL
    Opt Lett; 1988 Dec; 13(12):1081-3. PubMed ID: 19746131
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Energy Extraction and Achievement of the Saturation Limit in a Discharge-Pumped Table-Top Soft X-Ray Amplifier.
    Rocca JJ; Clark DP; Chilla JL; Shlyaptsev VN
    Phys Rev Lett; 1996 Aug; 77(8):1476-1479. PubMed ID: 10063088
    [No Abstract]   [Full Text] [Related]  

  • 80. Multipass diode-pumped solid-state optical amplifier.
    Plaessmann H; Ré SA; Alonis JJ; Vecht DL; Grossman WM
    Opt Lett; 1993 Sep; 18(17):1420-2. PubMed ID: 19823401
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.