These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 25836837)

  • 1. In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique.
    Kong L; Cui M
    Opt Express; 2015 Mar; 23(5):6145-50. PubMed ID: 25836837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo fluorescence microscopy via iterative multi-photon adaptive compensation technique.
    Kong L; Cui M
    Opt Express; 2014 Oct; 22(20):23786-94. PubMed ID: 25321957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of cranial window types for in vivo two-photon imaging of brain microstructures.
    Isshiki M; Okabe S
    Microscopy (Oxf); 2014 Feb; 63(1):53-63. PubMed ID: 24212360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique.
    Tang J; Germain RN; Cui M
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8434-9. PubMed ID: 22586078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution in vivo imaging of mouse brain through the intact skull.
    Park JH; Sun W; Cui M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9236-41. PubMed ID: 26170286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo volumetric imaging of biological dynamics in deep tissue via wavefront engineering.
    Kong L; Tang J; Cui M
    Opt Express; 2016 Jan; 24(2):1214-21. PubMed ID: 26832504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-photon imaging of mouse brain structure and function through the intact skull.
    Wang T; Ouzounov DG; Wu C; Horton NG; Zhang B; Wu CH; Zhang Y; Schnitzer MJ; Xu C
    Nat Methods; 2018 Oct; 15(10):789-792. PubMed ID: 30202059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion correction for cellular-resolution multi-photon fluorescence microscopy imaging of awake head-restrained mice using speed embedded HMM.
    Chen T; Xue Z; Wang C; Qu Z; Wong KK; Wong ST
    Comput Med Imaging Graph; 2012 Apr; 36(3):171-82. PubMed ID: 21890321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in adaptive optics-based two-photon fluorescence microscopy for brain imaging.
    Sahu P; Mazumder N
    Lasers Med Sci; 2020 Mar; 35(2):317-328. PubMed ID: 31729608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue.
    Wang K; Sun W; Richie CT; Harvey BK; Betzig E; Ji N
    Nat Commun; 2015 Jun; 6():7276. PubMed ID: 26073070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualizing in vivo brain neural structures using volume rendered feature spaces.
    Nakao M; Kurebayashi K; Sugiura T; Sato T; Sawada K; Kawakami R; Nemoto T; Minato K; Matsuda T
    Comput Biol Med; 2014 Oct; 53():85-93. PubMed ID: 25129020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spherical aberration-free microscopy system for live brain imaging.
    Ue Y; Monai H; Higuchi K; Nishiwaki D; Tajima T; Okazaki K; Hama H; Hirase H; Miyawaki A
    Biochem Biophys Res Commun; 2018 Jun; 500(2):236-241. PubMed ID: 29649479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention of features on a mapped Drosophila brain surface using a Bézier-tube-based surface model averaging technique.
    Chen GY; Wu CC; Shao HC; Chang HM; Chiang AS; Chen YC
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3314-26. PubMed ID: 22922691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.
    Strangman GE; Zhang Q; Li Z
    Neuroimage; 2014 Jan; 85 Pt 1():136-49. PubMed ID: 23660029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy.
    van Werkhoven TI; Antonello J; Truong HH; Verhaegen M; Gerritsen HC; Keller CU
    Opt Express; 2014 Apr; 22(8):9715-33. PubMed ID: 24787857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance microscopy of the C57BL mouse brain.
    Benveniste H; Kim K; Zhang L; Johnson GA
    Neuroimage; 2000 Jun; 11(6 Pt 1):601-11. PubMed ID: 10860789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization.
    Aloni D; Stern A; Javidi B
    Opt Express; 2011 Sep; 19(20):19681-7. PubMed ID: 21996910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping.
    Yoon J; Lee M; Lee K; Kim N; Kim JM; Park J; Yu H; Choi C; Heo WD; Park Y
    Sci Rep; 2015 Aug; 5():13289. PubMed ID: 26293590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multicenter R2* mapping in the healthy brain.
    Ropele S; Wattjes MP; Langkammer C; Kilsdonk ID; Graaf WL; Frederiksen JL; Fuglø D; Yiannakas M; Wheeler-Kingshott CA; Enzinger C; Rocca MA; Sprenger T; Amman M; Kappos L; Filippi M; Rovira A; Ciccarelli O; Barkhof F; Fazekas F
    Magn Reson Med; 2014 Mar; 71(3):1103-7. PubMed ID: 23657963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.