These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 25836873)
1. Double plasmonic nanodisks design for electromagnetically induced transparency and slow light. Lai G; Liang R; Zhang Y; Bian Z; Yi L; Zhan G; Zhao R Opt Express; 2015 Mar; 23(5):6554-61. PubMed ID: 25836873 [TBL] [Abstract][Full Text] [Related]
2. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators. Cui Y; Zeng C Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694 [TBL] [Abstract][Full Text] [Related]
4. Method proposing a slow light ring resonator structure coupled with a metal-dielectric-metal waveguide system based on plasmonic induced transparency. Keleshtery MH; Kaatuzian H; Mir A; Zandi A Appl Opt; 2017 May; 56(15):4496-4504. PubMed ID: 29047882 [TBL] [Abstract][Full Text] [Related]
5. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Lu H; Liu X; Wang G; Mao D Nanotechnology; 2012 Nov; 23(44):444003. PubMed ID: 23079958 [TBL] [Abstract][Full Text] [Related]
6. Induced transparency in nanoscale plasmonic resonator systems. Lu H; Liu X; Mao D; Gong Y; Wang G Opt Lett; 2011 Aug; 36(16):3233-5. PubMed ID: 21847218 [TBL] [Abstract][Full Text] [Related]
7. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Han Z; Bozhevolnyi SI Opt Express; 2011 Feb; 19(4):3251-7. PubMed ID: 21369147 [TBL] [Abstract][Full Text] [Related]
8. Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency. Wang G; Lu H; Liu X Opt Express; 2012 Sep; 20(19):20902-7. PubMed ID: 23037214 [TBL] [Abstract][Full Text] [Related]
9. Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities. Zhan G; Liang R; Liang H; Luo J; Zhao R Opt Express; 2014 Apr; 22(8):9912-9. PubMed ID: 24787873 [TBL] [Abstract][Full Text] [Related]
10. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators. Zhuang H; Kong F; Li K; Sheng S Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785 [TBL] [Abstract][Full Text] [Related]
11. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials. Zhang Z; Yang J; He X; Han Y; Zhang J; Huang J; Chen D; Xu S Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865283 [TBL] [Abstract][Full Text] [Related]
12. Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium. Wang G; Lu H; Liu X; Gong Y; Wang L Appl Opt; 2011 Sep; 50(27):5287-90. PubMed ID: 21947047 [TBL] [Abstract][Full Text] [Related]
14. Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators. Cao G; Li H; Zhan S; Xu H; Liu Z; He Z; Wang Y Opt Express; 2013 Apr; 21(8):9198-205. PubMed ID: 23609630 [TBL] [Abstract][Full Text] [Related]
15. Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide. Cao G; Li H; Zhan S; He Z; Guo Z; Xu X; Yang H Opt Lett; 2014 Jan; 39(2):216-9. PubMed ID: 24562110 [TBL] [Abstract][Full Text] [Related]
16. Electromagnetically induced transparency in hybrid plasmonic-dielectric system. Tang B; Dai L; Jiang C Opt Express; 2011 Jan; 19(2):628-37. PubMed ID: 21263602 [TBL] [Abstract][Full Text] [Related]
17. Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system. He LY; Wang TJ; Gao YP; Cao C; Wang C Opt Express; 2015 Sep; 23(18):23817-26. PubMed ID: 26368475 [TBL] [Abstract][Full Text] [Related]
18. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Wang G; Lu H; Liu X; Mao D; Duan L Opt Express; 2011 Feb; 19(4):3513-8. PubMed ID: 21369174 [TBL] [Abstract][Full Text] [Related]