BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 25836990)

  • 1. Susceptibility losses in heating of magnetic core/shell nanoparticles for hyperthermia: a Monte Carlo study of shape and size effects.
    Vasilakaki M; Binns C; Trohidou KN
    Nanoscale; 2015 May; 7(17):7753-62. PubMed ID: 25836990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance.
    Niculaes D; Lak A; Anyfantis GC; Marras S; Laslett O; Avugadda SK; Cassani M; Serantes D; Hovorka O; Chantrell R; Pellegrino T
    ACS Nano; 2017 Dec; 11(12):12121-12133. PubMed ID: 29155560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative investigation of normal and inverted exchange bias effect for magnetic fluid hyperthermia applications.
    Tsopoe SP; Borgohain C; Fopase R; Pandey LM; Borah JP
    Sci Rep; 2020 Oct; 10(1):18666. PubMed ID: 33122680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring Interfacial Exchange Anisotropy in Hard-Soft Core-Shell Ferrite Nanoparticles for Magnetic Hyperthermia Applications.
    Narayanaswamy V; Al-Omari IA; Kamzin AS; Issa B; Obaidat IM
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia.
    Branquinho LC; Carrião MS; Costa AS; Zufelato N; Sousa MH; Miotto R; Ivkov R; Bakuzis AF
    Sci Rep; 2013 Oct; 3():2887. PubMed ID: 24096272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in Zn
    Kerroum MAA; Iacovita C; Baaziz W; Ihiawakrim D; Rogez G; Benaissa M; Lucaciu CM; Ersen O
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33096631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjusting the Néel relaxation time of Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles for optimal heat generation in magnetic hyperthermia.
    Fabris F; Lohr JH; Lima E; de Almeida AA; Troiani H; Rodríguez LM; Vásquez Mansilla M; Aguirre M; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler E
    Nanotechnology; 2020 Oct; ():. PubMed ID: 33086203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of stable colloidal dispersion of surface modified Fe
    Sabzi Dizajyekan B; Jafari A; Vafaie-Sefti M; Saber R; Fakhroueian Z
    Sci Rep; 2024 Jan; 14(1):1296. PubMed ID: 38221547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of data selection and fitting on SAR estimation for magnetic nanoparticle heating.
    Ring HL; Sharma A; Ivkov R; Bischof JC
    Int J Hyperthermia; 2020 Dec; 37(3):100-107. PubMed ID: 33426988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant-driven optimization of iron-based nanoparticle synthesis: a study on magnetic hyperthermia and endothelial cell uptake.
    Riahi K; Dirba I; Ablets Y; Filatova A; Sultana SN; Adabifiroozjaei E; Molina-Luna L; Nuber UA; Gutfleisch O
    Nanoscale Adv; 2023 Oct; 5(21):5859-5869. PubMed ID: 37881718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjusting the Néel relaxation time of Fe
    Fabris F; Lohr J; Lima E; de Almeida AA; Troiani HE; Rodríguez LM; Vásquez Mansilla M; Aguirre MH; Goya GF; Rinaldi D; Ghirri A; Peddis D; Fiorani D; Zysler RD; De Biasi E; Winkler EL
    Nanotechnology; 2020 Nov; 32(6):065703. PubMed ID: 33210620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the Efficacy of Magnetic Nanoparticles for MRI and Hyperthermia Applications via Machine Learning Methods.
    Kim P; Serov N; Falchevskaya A; Shabalkin I; Dmitrenko A; Kladko D; Vinogradov V
    Small; 2023 Nov; 19(48):e2303522. PubMed ID: 37563807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power.
    Iacovita C; Stiufiuc R; Radu T; Florea A; Stiufiuc G; Dutu A; Mican S; Tetean R; Lucaciu CM
    Nanoscale Res Lett; 2015 Dec; 10(1):391. PubMed ID: 26446074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heating ability of elongated magnetic nanoparticles.
    Gubanova EM; Usov NA; Oleinikov VA
    Beilstein J Nanotechnol; 2021; 12():1404-1412. PubMed ID: 35028264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of dipole interactions in hyperthermia heating colloidal clusters of densely-packed superparamagnetic nanoparticles.
    Fu R; Yan Y; Roberts C; Liu Z; Chen Y
    Sci Rep; 2018 Mar; 8(1):4704. PubMed ID: 29549359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction heating: an efficient methodology for the synthesis of functional core-shell nanoparticles.
    Raya-Barón Á; Ghosh S; Mazarío J; Varela-Izquierdo V; Fazzini PF; Tricard S; Esvan J; Chaudret B
    Mater Horiz; 2023 Oct; 10(11):4952-4959. PubMed ID: 37609955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One.
    Ovejero JG; Spizzo F; Morales MP; Del Bianco L
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An exhaustive scrutiny to amplify the heating prospects by devising a core@shell nanostructure for constructive magnetic hyperthermia applications.
    Tsopoe SP; Borgohain C; Kar M; Kumar Panda S; Borah JP
    Sci Rep; 2023 Aug; 13(1):13669. PubMed ID: 37608046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Modeling of Frequency Mixing Measurements of Magnetic Nanoparticles Using Micromagnetic Simulations and Langevin Theory.
    Engelmann UM; Shalaby A; Shasha C; Krishnan KM; Krause HJ
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles.
    Ruta S; Chantrell R; Hovorka O
    Sci Rep; 2015 Mar; 5():9090. PubMed ID: 25766365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.