These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 25837129)

  • 1. Theoretical investigation of tensile strained GeSn waveguide with Si₃N₄ liner stressor for mid-infrared detector and modulator applications.
    Zhang Q; Liu Y; Yan J; Zhang C; Hao Y; Han G
    Opt Express; 2015 Mar; 23(6):7924-32. PubMed ID: 25837129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation investigation of tensile strained GeSn fin photodetector with Si(3)N(4) liner stressor for extension of absorption wavelength.
    Zhang Q; Liu Y; Yan J; Zhang C; Hao Y; Han G
    Opt Express; 2015 Jan; 23(2):739-46. PubMed ID: 25835833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-infrared light emission > 3 µm wavelength from tensile strained GeSn microdisks.
    Millar RW; Dumas DCS; Gallacher KF; Jahandar P; MacGregor C; Myronov M; Paul DJ
    Opt Express; 2017 Oct; 25(21):25374-25385. PubMed ID: 29041205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer.
    Huang YH; Chang GE; Li H; Cheng HH
    Opt Lett; 2017 May; 42(9):1652-1655. PubMed ID: 28454127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of performance enhancement in GeSn/SiGeSn light-emitting diode enabled by Si
    Zhang Q; Liu Y; Han G; Shao Y; Gao X; Zhang C; Zhang J; Hao Y
    Appl Opt; 2016 Dec; 55(34):9668-9674. PubMed ID: 27958455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-k gate stacks on low bandgap tensile strained Ge and GeSn alloys for field-effect transistors.
    Wirths S; Stange D; Pampillón MA; Tiedemann AT; Mussler G; Fox A; Breuer U; Baert B; San Andrés E; Nguyen ND; Hartmann JM; Ikonic Z; Mantl S; Buca D
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):62-7. PubMed ID: 25531887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress tuning of the fundamental absorption edge of pure germanium waveguides.
    Nguyen LM; Kuroyanagi R; Tsuchizawa T; Ishikawa Y; Yamada K; Wada K
    Opt Express; 2015 Jul; 23(14):18487-92. PubMed ID: 26191906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures.
    Soref R; Hendrickson J; Cleary JW
    Opt Express; 2012 Feb; 20(4):3814-24. PubMed ID: 22418138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy.
    Kim S; Bhargava N; Gupta J; Coppinger M; Kolodzey J
    Opt Express; 2014 May; 22(9):11029-34. PubMed ID: 24921801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of the bandgap regulation of a two-dimensional GeSn alloy under biaxial strain and uniaxial strain along the armchair direction.
    Huang W; Yang H; Cheng B; Xue C
    Phys Chem Chem Phys; 2018 Sep; 20(36):23344-23351. PubMed ID: 30175833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of tensile strain on low Sn content GeSn lasing.
    Rainko D; Ikonic Z; Elbaz A; von den Driesch N; Stange D; Herth E; Boucaud P; El Kurdi M; Grützmacher D; Buca D
    Sci Rep; 2019 Jan; 9(1):259. PubMed ID: 30670785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires.
    Zhu Z; Song Y; Chen Q; Zhang Z; Zhang L; Li Y; Wang S
    Nanoscale Res Lett; 2017 Dec; 12(1):472. PubMed ID: 28759987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength.
    Chang GE; Chang SW; Chuang SL
    Opt Express; 2009 Jul; 17(14):11246-58. PubMed ID: 19582037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Control of Morphology and Composition in Ge/GeSn Core/Shell Nanowires.
    Assali S; Bergamaschini R; Scalise E; Verheijen MA; Albani M; Dijkstra A; Li A; Koelling S; Bakkers EPAM; Montalenti F; Miglio L
    ACS Nano; 2020 Feb; 14(2):2445-2455. PubMed ID: 31972083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensile strained direct bandgap GeSn microbridges enabled in GeSn-on-insulator substrates with residual tensile strain.
    Burt D; Zhang L; Jung Y; Joo HJ; Kim Y; Chen M; Son B; Fan W; Ikonic Z; Tan CS; Nam D
    Opt Lett; 2023 Feb; 48(3):735-738. PubMed ID: 36723576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon.
    Gassenq A; Gencarelli F; Van Campenhout J; Shimura Y; Loo R; Narcy G; Vincent B; Roelkens G
    Opt Express; 2012 Dec; 20(25):27297-303. PubMed ID: 23262679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform.
    Mączko HS; Kudrawiec R; Gladysiewicz M
    Sci Rep; 2016 Sep; 6():34082. PubMed ID: 27686056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures.
    Timofeev VA; Nikiforov AI; Tuktamyshev AR; Mashanov VI; Loshkarev ID; Bloshkin AA; Gutakovskii AK
    Nanotechnology; 2018 Apr; 29(15):154002. PubMed ID: 29388560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman scattering study of GeSn under 〈1 0 0〉 and 〈1 1 0〉 uniaxial stress.
    An S; Tai YC; Lee KC; Shin SH; Cheng HH; Chang GE; Kim M
    Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34020429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of strain engineering and Sn content on GeSn heterostructured nanomaterials for nanoelectronics and photonic devices.
    Nawwar MA; Abo Ghazala MS; Sharaf El-Deen LM; Kashyout AEB
    RSC Adv; 2022 Aug; 12(38):24518-24554. PubMed ID: 36128382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.