These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 25837248)
1. Bordetella pertussis Lipid A Recognition by Toll-like Receptor 4 and MD-2 Is Dependent on Distinct Charged and Uncharged Interfaces. Maeshima N; Evans-Atkinson T; Hajjar AM; Fernandez RC J Biol Chem; 2015 May; 290(21):13440-53. PubMed ID: 25837248 [TBL] [Abstract][Full Text] [Related]
2. Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia. Di Lorenzo F; Kubik Ł; Oblak A; Lorè NI; Cigana C; Lanzetta R; Parrilli M; Hamad MA; De Soyza A; Silipo A; Jerala R; Bragonzi A; Valvano MA; Martín-Santamaría S; Molinaro A J Biol Chem; 2015 Aug; 290(35):21305-19. PubMed ID: 26160169 [TBL] [Abstract][Full Text] [Related]
3. Substitution of the Bordetella pertussis lipid A phosphate groups with glucosamine is required for robust NF-kappaB activation and release of proinflammatory cytokines in cells expressing human but not murine Toll-like receptor 4-MD-2-CD14. Marr N; Hajjar AM; Shah NR; Novikov A; Yam CS; Caroff M; Fernandez RC Infect Immun; 2010 May; 78(5):2060-9. PubMed ID: 20176798 [TBL] [Abstract][Full Text] [Related]
4. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Maeshima N; Fernandez RC Front Cell Infect Microbiol; 2013; 3():3. PubMed ID: 23408095 [TBL] [Abstract][Full Text] [Related]
5. Activation of Toll-like receptors by Burkholderia pseudomallei. West TE; Ernst RK; Jansson-Hutson MJ; Skerrett SJ BMC Immunol; 2008 Aug; 9():46. PubMed ID: 18691413 [TBL] [Abstract][Full Text] [Related]
6. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica. Hajjar AM; Ernst RK; Fortuno ES; Brasfield AS; Yam CS; Newlon LA; Kollmann TR; Miller SI; Wilson CB PLoS Pathog; 2012; 8(10):e1002963. PubMed ID: 23071439 [TBL] [Abstract][Full Text] [Related]
7. Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. Walsh C; Gangloff M; Monie T; Smyth T; Wei B; McKinley TJ; Maskell D; Gay N; Bryant C J Immunol; 2008 Jul; 181(2):1245-54. PubMed ID: 18606678 [TBL] [Abstract][Full Text] [Related]
8. MD-2 residues tyrosine 42, arginine 69, aspartic acid 122, and leucine 125 provide species specificity for lipid IVA. Meng J; Drolet JR; Monks BG; Golenbock DT J Biol Chem; 2010 Sep; 285(36):27935-43. PubMed ID: 20592019 [TBL] [Abstract][Full Text] [Related]
9. Minor modifications to the phosphate groups and the C3' acyl chain length of lipid A in two Bordetella pertussis strains, BP338 and 18-323, independently affect Toll-like receptor 4 protein activation. Shah NR; Albitar-Nehme S; Kim E; Marr N; Novikov A; Caroff M; Fernandez RC J Biol Chem; 2013 Apr; 288(17):11751-60. PubMed ID: 23467413 [TBL] [Abstract][Full Text] [Related]
10. From agonist to antagonist: structure and dynamics of innate immune glycoprotein MD-2 upon recognition of variably acylated bacterial endotoxins. DeMarco ML; Woods RJ Mol Immunol; 2011 Oct; 49(1-2):124-33. PubMed ID: 21924775 [TBL] [Abstract][Full Text] [Related]
11. MD-2-mediated ionic interactions between lipid A and TLR4 are essential for receptor activation. Meng J; Lien E; Golenbock DT J Biol Chem; 2010 Mar; 285(12):8695-702. PubMed ID: 20018893 [TBL] [Abstract][Full Text] [Related]
12. Structural regions of MD-2 that determine the agonist-antagonist activity of lipid IVa. Muroi M; Tanamoto K J Biol Chem; 2006 Mar; 281(9):5484-91. PubMed ID: 16407172 [TBL] [Abstract][Full Text] [Related]
13. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Ohto U; Fukase K; Miyake K; Shimizu T Proc Natl Acad Sci U S A; 2012 May; 109(19):7421-6. PubMed ID: 22532668 [TBL] [Abstract][Full Text] [Related]
14. Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Heine H; Adanitsch F; Peternelj TT; Haegman M; Kasper C; Ittig S; Beyaert R; Jerala R; Zamyatina A Front Immunol; 2021; 12():631797. PubMed ID: 33815382 [TBL] [Abstract][Full Text] [Related]
15. Antagonistic lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 via interaction with the human MD-2 lipopolysaccharide binding site. Coats SR; Do CT; Karimi-Naser LM; Braham PH; Darveau RP Cell Microbiol; 2007 May; 9(5):1191-202. PubMed ID: 17217428 [TBL] [Abstract][Full Text] [Related]
16. Identification of key residues that confer Rhodobacter sphaeroides LPS activity at horse TLR4/MD-2. Irvine KL; Gangloff M; Walsh CM; Spring DR; Gay NJ; Bryant CE PLoS One; 2014; 9(5):e98776. PubMed ID: 24879320 [TBL] [Abstract][Full Text] [Related]
17. Species-specific activation of TLR4 by hypoacylated endotoxins governed by residues 82 and 122 of MD-2. Oblak A; Jerala R PLoS One; 2014; 9(9):e107520. PubMed ID: 25203747 [TBL] [Abstract][Full Text] [Related]
19. Human MD-2 discrimination of meningococcal lipid A structures and activation of TLR4. Zimmer SM; Zughaier SM; Tzeng YL; Stephens DS Glycobiology; 2007 Aug; 17(8):847-56. PubMed ID: 17545685 [TBL] [Abstract][Full Text] [Related]
20. Stable transduction of bovine TLR4 and bovine MD-2 into LPS-nonresponsive cells and soluble CD14 promote the ability to respond to LPS. Sauter KS; Brcic M; Franchini M; Jungi TW Vet Immunol Immunopathol; 2007 Jul; 118(1-2):92-104. PubMed ID: 17559944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]