These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 25837345)

  • 61. A high temporal-spatial vehicle emission inventory based on detailed hourly traffic data in a medium-sized city of China.
    Liu YH; Ma JL; Li L; Lin XF; Xu WJ; Ding H
    Environ Pollut; 2018 May; 236():324-333. PubMed ID: 29414354
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Estimation of exposure and premature mortality from near-roadway fine particulate matter concentrations emitted by heavy-duty diesel trucks in Beijing.
    Zhang B; Cheng S; Lu F; Lei M
    Environ Pollut; 2022 Oct; 311():119990. PubMed ID: 36027625
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments.
    Van Poppel M; Peters J; Bleux N
    Environ Pollut; 2013 Dec; 183():224-33. PubMed ID: 23545013
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Spatial Variation and Land Use Regression Modeling of the Oxidative Potential of Fine Particles.
    Yang A; Wang M; Eeftens M; Beelen R; Dons E; Leseman DL; Brunekreef B; Cassee FR; Janssen NA; Hoek G
    Environ Health Perspect; 2015 Nov; 123(11):1187-92. PubMed ID: 25840153
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pedestrian exposure to black carbon and PM
    Alas HD; Stöcker A; Umlauf N; Senaweera O; Pfeifer S; Greven S; Wiedensohler A
    J Expo Sci Environ Epidemiol; 2022 Jul; 32(4):604-614. PubMed ID: 34455418
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A proposed methodology for impact assessment of air quality traffic-related measures: The case of PM
    Fontes T; Li P; Barros N; Zhao P
    Environ Pollut; 2018 Aug; 239():818-828. PubMed ID: 29751340
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Oxidative potential of ambient PM
    Liu W; Xu Y; Liu W; Liu Q; Yu S; Liu Y; Wang X; Tao S
    Environ Pollut; 2018 May; 236():514-528. PubMed ID: 29428706
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evaluation of vehicular pollution levels using line source model for hot spots in Muscat, Oman.
    Amoatey P; Omidvarborna H; Baawain MS; Al-Mamun A
    Environ Sci Pollut Res Int; 2020 Sep; 27(25):31184-31201. PubMed ID: 32488708
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments.
    Briggs DJ; de Hoogh C; Gulliver J; Wills J; Elliott P; Kingham S; Smallbone K
    Sci Total Environ; 2000 May; 253(1-3):151-67. PubMed ID: 10843339
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Assessing personal exposure to traffic-related air pollution using individual travel-activity diary data and an on-road source air dispersion model.
    Park YM
    Health Place; 2020 May; 63():102351. PubMed ID: 32543437
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.
    Adams MD; Kanaroglou PS
    J Environ Manage; 2016 Mar; 168():133-41. PubMed ID: 26706225
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Overview of the Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) study: theoretical background and model for design of field experiments.
    Hahn I; Wiener RW; Richmond-Bryant J; Brixey LA; Henkle SW
    J Environ Monit; 2009 Dec; 11(12):2115-21. PubMed ID: 20024008
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A framework for emissions source apportionment in industrial areas: MM5/CALPUFF in a near-field application.
    Ghannam K; El-Fadel M
    J Air Waste Manag Assoc; 2013 Feb; 63(2):190-204. PubMed ID: 23472303
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Health risk assessment of China's main air pollutants.
    Sun J; Zhou T
    BMC Public Health; 2017 Feb; 17(1):212. PubMed ID: 28219424
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phenology of a Vegetation Barrier and Resulting Impacts on Near-Highway Particle Number and Black Carbon Concentrations on a School Campus.
    Fuller CH; Carter DR; Hayat MJ; Baldauf R; Watts Hull R
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28208726
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Full-chain health impact assessment of traffic-related air pollution and childhood asthma.
    Khreis H; de Hoogh K; Nieuwenhuijsen MJ
    Environ Int; 2018 May; 114():365-375. PubMed ID: 29602620
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characteristics of Major Air Pollutants in China.
    Ren L; Yang W; Bai Z
    Adv Exp Med Biol; 2017; 1017():7-26. PubMed ID: 29177957
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High resolution vehicular exhaust and non-exhaust emission analysis of urban-rural district of India.
    Tomar G; Nagpure AS; Kumar V; Jain Y
    Sci Total Environ; 2022 Jan; 805():150255. PubMed ID: 34818776
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multipollutant impacts to U.S. receptors of regional on-road freight in Ontario, Canada.
    Mukherjee U; Saari RK; Bachmann C; Wang W
    J Air Waste Manag Assoc; 2020 Nov; 70(11):1121-1135. PubMed ID: 32931377
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Did policies to abate atmospheric emissions from traffic have a positive effect in London?
    Font A; Fuller GW
    Environ Pollut; 2016 Nov; 218():463-474. PubMed ID: 27450415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.