BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25837471)

  • 1. Glycolic acid-catalyzed deamidation of asparagine residues in degrading PLGA matrices: a computational study.
    Manabe N; Kirikoshi R; Takahashi O
    Int J Mol Sci; 2015 Mar; 16(4):7261-72. PubMed ID: 25837471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Computational Study of the Mechanism of Succinimide Formation in the Asn-His Sequence: Intramolecular Catalysis by the His Side Chain.
    Takahashi O; Manabe N; Kirikoshi R
    Molecules; 2016 Mar; 21(3):327. PubMed ID: 27005609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.
    Takahashi O; Kirikoshi R; Manabe N
    Int J Mol Sci; 2015 Jan; 16(1):1613-26. PubMed ID: 25588215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip.
    Grayson AC; Voskerician G; Lynn A; Anderson JM; Cima MJ; Langer R
    J Biomater Sci Polym Ed; 2004; 15(10):1281-304. PubMed ID: 15559850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of peptide acylation inside degrading PLGA microspheres by capillary electrophoresis and MALDI-TOF mass spectrometry.
    Na DH; Youn YS; Lee SD; Son MW; Kim WB; DeLuca PP; Lee KC
    J Control Release; 2003 Oct; 92(3):291-9. PubMed ID: 14568410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2009 Feb; 113(6):1111-20. PubMed ID: 19152321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conjugation of drug to poly(D,L-lactic-co-glycolic acid) for controlled release from biodegradable microspheres.
    Oh JE; Nam YS; Lee KH; Park TG
    J Control Release; 1999 Feb; 57(3):269-80. PubMed ID: 9895414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms.
    Houchin ML; Topp EM
    J Pharm Sci; 2008 Jul; 97(7):2395-404. PubMed ID: 17828756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monomer sequence in PLGA microparticles: Effects on acidic microclimates and in vivo inflammatory response.
    Washington MA; Balmert SC; Fedorchak MV; Little SR; Watkins SC; Meyer TY
    Acta Biomater; 2018 Jan; 65():259-271. PubMed ID: 29101019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of glycolic acid monomer ratio on the emulsifying activity of PLGA in preparation of protein-loaded SLN.
    Xie S; Wang S; Zhu L; Wang F; Zhou W
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):358-61. PubMed ID: 19717285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Racemization of the Succinimide Intermediate Formed in Proteins and Peptides: A Computational Study of the Mechanism Catalyzed by Dihydrogen Phosphate Ion.
    Takahashi O; Kirikoshi R; Manabe N
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27735868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate-Catalyzed Succinimide Formation from an NGR-Containing Cyclic Peptide: A Novel Mechanism for Deammoniation of the Tetrahedral Intermediate.
    Kirikoshi R; Manabe N; Takahashi O
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30200364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular Targeting of Poly Lactic-Co-Glycolic Acid Nanoparticles by Surface Functionalization with Peptides.
    de Oliveira TD; Travassos LR; Arruda DC; Tada DB
    J Biomed Nanotechnol; 2021 Jul; 17(7):1320-1329. PubMed ID: 34446135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid).
    Chen Y; Yang Z; Liu C; Wang C; Zhao S; Yang J; Sun H; Zhang Z; Kong D; Song C
    Int J Nanomedicine; 2013; 8():4315-26. PubMed ID: 24235829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres.
    Fu K; Pack DW; Klibanov AM; Langer R
    Pharm Res; 2000 Jan; 17(1):100-6. PubMed ID: 10714616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction mechanism of deamidation of asparaginyl residues in peptides: effect of solvent molecules.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2006 Jul; 110(27):8354-65. PubMed ID: 16821819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acylation of peptides by lactic acid solutions.
    Lucke A; Göpferich A
    Eur J Pharm Biopharm; 2003 Jan; 55(1):27-33. PubMed ID: 12551701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling degradation of acid-hydrolyzable pluronic hydrogels by physical entrapment of poly(lactic acid-co-glycolic acid) microspheres.
    Lee JB; Chun KW; Yoon JJ; Park TG
    Macromol Biosci; 2004 Oct; 4(10):957-62. PubMed ID: 15487026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.