BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25837471)

  • 21. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties.
    Betbeder D; Lipka E; Howsam M; Carpentier R
    Int J Nanomedicine; 2015; 10():5355-66. PubMed ID: 26345627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Micelle-templated, poly(lactic-
    Nabar GM; Mahajan KD; Calhoun MA; Duong AD; Souva MS; Xu J; Czeisler C; Puduvalli VK; Otero JJ; Wyslouzil BE; Winter JO
    Int J Nanomedicine; 2018; 13():351-366. PubMed ID: 29391794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlled release of octreotide and assessment of peptide acylation from poly(D,L-lactide-co-hydroxymethyl glycolide) compared to PLGA microspheres.
    Ghassemi AH; van Steenbergen MJ; Barendregt A; Talsma H; Kok RJ; van Nostrum CF; Crommelin DJ; Hennink WE
    Pharm Res; 2012 Jan; 29(1):110-20. PubMed ID: 21744173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and Characterization of PLGA Encapsulated Protective Antigen Domain 4 Nanoformulation.
    Manish M; Bhatnagar R; Singh S
    Methods Mol Biol; 2016; 1404():669-681. PubMed ID: 27076329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems.
    Schwendeman SP
    Crit Rev Ther Drug Carrier Syst; 2002; 19(1):73-98. PubMed ID: 12046892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-acting inhalable chitosan-coated poly(lactic-co-glycolic acid) nanoparticles containing hydrophobically modified exendin-4 for treating type 2 diabetes.
    Lee C; Choi JS; Kim I; Oh KT; Lee ES; Park ES; Lee KC; Youn YS
    Int J Nanomedicine; 2013; 8():2975-83. PubMed ID: 23976850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited.
    Xu P; Gullotti E; Tong L; Highley CB; Errabelli DR; Hasan T; Cheng JX; Kohane DS; Yeo Y
    Mol Pharm; 2009; 6(1):190-201. PubMed ID: 19035785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins.
    Dehart MP; Anderson BD
    J Pharm Sci; 2007 Oct; 96(10):2667-85. PubMed ID: 17518358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pairing-Enhanced Regioselectivity: Synthesis of Alternating Poly(lactic-
    Lu Y; Coates GW
    J Am Chem Soc; 2023 Oct; 145(41):22425-22432. PubMed ID: 37793193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system.
    Kosinski AM; Brugnano JL; Seal BL; Knight FC; Panitch A
    Biomatter; 2012; 2(4):195-201. PubMed ID: 23507885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptide acylation by poly(alpha-hydroxy esters).
    Lucke A; Kiermaier J; Göpferich A
    Pharm Res; 2002 Feb; 19(2):175-81. PubMed ID: 11883645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein release microparticles based on the blend of poly(D,L-lactic-co-glycolic acid) and oligo-ethylene glycol grafted poly(L-lactide).
    Cho KY; Choi SH; Kim CH; Nam YS; Park TG; Park JK
    J Control Release; 2001 Oct; 76(3):275-84. PubMed ID: 11578742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of bone matrix and demineralized bone matrix incorporated PLGA matrices for bone repair.
    Jayasuriya AC; Ebraheim NA
    J Mater Sci Mater Med; 2009 Aug; 20(8):1637-44. PubMed ID: 19330524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Analysis of the Mechanism of Nonenzymatic Peptide Bond Cleavage at the C-Terminal Side of an Asparagine Residue.
    Kato K; Nakayoshi T; Ishikawa Y; Kurimoto E; Oda A
    ACS Omega; 2021 Nov; 6(44):30078-30084. PubMed ID: 34778679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid oligomers: Part II. Biodegradation and drug delivery application.
    Wang N; Wu XS
    J Biomater Sci Polym Ed; 1997; 9(1):75-87. PubMed ID: 9505204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) (PLGA) microspheres.
    Cleland JL; Mac A; Boyd B; Yang J; Duenas ET; Yeung D; Brooks D; Hsu C; Chu H; Mukku V; Jones AJ
    Pharm Res; 1997 Apr; 14(4):420-5. PubMed ID: 9144725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: Part III. Drug delivery application.
    Wu XS
    Artif Cells Blood Substit Immobil Biotechnol; 2004; 32(4):575-91. PubMed ID: 15974184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocompatibility and enhanced osteogenic differentiation of human mesenchymal stem cells in response to surface engineered poly(D,L-lactic-co-glycolic acid) microparticles.
    Rogers CM; Deehan DJ; Knuth CA; Rose FR; Shakesheff KM; Oldershaw RA
    J Biomed Mater Res A; 2014 Nov; 102(11):3872-82. PubMed ID: 24339408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minimizing acylation of peptides in PLGA microspheres.
    Zhang Y; Schwendeman SP
    J Control Release; 2012 Aug; 162(1):119-26. PubMed ID: 22546683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redefining the importance of polylactide-co-glycolide acid (PLGA) in drug delivery.
    Chavan YR; Tambe SM; Jain DD; Khairnar SV; Amin PD
    Ann Pharm Fr; 2022 Sep; 80(5):603-616. PubMed ID: 34896382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.