These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25837502)

  • 21. Determination of the pH dependent redox potential of glucose oxidase by spectroelectrochemistry.
    Vogt S; Schneider M; Schäfer-Eberwein H; Nöll G
    Anal Chem; 2014 Aug; 86(15):7530-5. PubMed ID: 25007396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose oxidase from Penicillium amagasakiense. Primary structure and comparison with other glucose-methanol-choline (GMC) oxidoreductases.
    Kiess M; Hecht HJ; Kalisz HM
    Eur J Biochem; 1998 Feb; 252(1):90-9. PubMed ID: 9523716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum.
    Gadda G; Fitzpatrick PF
    Biochemistry; 1998 Apr; 37(17):6154-64. PubMed ID: 9558355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox-triggered FTIR difference spectra of FAD in aqueous solution and bound to flavoproteins.
    Wille G; Ritter M; Friedemann R; Mäntele W; Hübner G
    Biochemistry; 2003 Dec; 42(50):14814-21. PubMed ID: 14674755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular simulation of flavin adenine dinucleotide immobilized on charged single-walled carbon nanotubes for biosensor applications.
    Yang G; Kang Z; Ye X; Wu T; Zhu Q
    Biomaterials; 2012 Dec; 33(34):8757-70. PubMed ID: 22975425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Penicillium expansum glucose oxidase-encoding gene, GOX2, is essential for gluconic acid production and acidification during colonization of deciduous fruit.
    Barad S; Horowitz SB; Moscovitz O; Lichter A; Sherman A; Prusky D
    Mol Plant Microbe Interact; 2012 Jun; 25(6):779-88. PubMed ID: 22352719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation, purification and characterization of a novel glucose oxidase from Penicillium sp. CBS 120262 optimally active at neutral pH.
    Simpson C; Jordaan J; Gardiner NS; Whiteley C
    Protein Expr Purif; 2007 Feb; 51(2):260-6. PubMed ID: 17084642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting glucose oxidase at aspartate and glutamate residues with organic two-electron redox mediators.
    Battaglini F; Koutroumanis M; English AM; Mikkelsen SR
    Bioconjug Chem; 1994; 5(5):430-5. PubMed ID: 7849073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors.
    Tsuruoka N; Sadakane T; Hayashi R; Tsujimura S
    Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28287419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-resolved flavin adenine dinucleotide fluorescence study of the interaction between immobilized glucose oxidase and glucose.
    Esposito R; Delfino I; Lepore M
    J Fluoresc; 2013 Sep; 23(5):947-55. PubMed ID: 23576005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Thermal stability of Penicillium adametzii glucose oxidase].
    Eremin AN; Metelitsa DI; Shishko ZhF; Mikhaĭlova RV; Iasenko MI; Lobanok AG
    Prikl Biokhim Mikrobiol; 2001; 37(6):678-86. PubMed ID: 11771321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions of glucose oxidase with various metal polypyridine complexes as mediators of glucose oxidation.
    Nakabayashi Y; Nakamura K; Kawachi M; Motoyama T; Yamauchi O
    J Biol Inorg Chem; 2003 Jan; 8(1-2):45-52. PubMed ID: 12459898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Mechanism of labilization of Penicillium vitale glucose oxidase].
    Dolgiĭ NL; Degtiar' RG; Gulyĭ MF
    Ukr Biokhim Zh; 1977; 49(2):90-5. PubMed ID: 867542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving enzyme-electrode contacts by redox modification of cofactors.
    Riklin A; Katz E; Willner I; Stocker A; Bückmann AF
    Nature; 1995 Aug; 376(6542):672-5. PubMed ID: 7651516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deflavination of flavo-oxidases by nucleophilic reagents.
    Zlateva T; Boteva R; Filippi B; Veenhuis M; van der Klei IJ
    Biochim Biophys Acta; 2001 Aug; 1548(2):213-9. PubMed ID: 11513966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of bioelectrocatalytic transformations on DNA scaffolds.
    Piperberg G; Wilner OI; Yehezkeli O; Tel-Vered R; Willner I
    J Am Chem Soc; 2009 Jul; 131(25):8724-5. PubMed ID: 19505077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of degree of glycosylation on charge of glucose oxidase and redox hydrogel catalytic efficiency.
    Courjean O; Flexer V; Prévoteau A; Suraniti E; Mano N
    Chemphyschem; 2010 Sep; 11(13):2795-7. PubMed ID: 20437449
    [No Abstract]   [Full Text] [Related]  

  • 39. Effect of polyols and sugars on heat-induced flavin dissociation in glucose oxidase.
    Cioci F; Lavecchia R
    Biochem Mol Biol Int; 1994 Oct; 34(4):705-12. PubMed ID: 7866296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trehalose-mediated thermal stabilization of glucose oxidase from Aspergillus niger.
    Paz-Alfaro KJ; Ruiz-Granados YG; Uribe-Carvajal S; Sampedro JG
    J Biotechnol; 2009 May; 141(3-4):130-6. PubMed ID: 19433216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.