These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 25837561)
1. Microalgae: cultivation techniques and wastewater phycoremediation. Pacheco MM; Hoeltz M; Moraes MS; Schneider RC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(6):585-601. PubMed ID: 25837561 [TBL] [Abstract][Full Text] [Related]
2. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Olguín EJ Biotechnol Adv; 2012; 30(5):1031-46. PubMed ID: 22609182 [TBL] [Abstract][Full Text] [Related]
3. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Ranjbar S; Malcata FX Molecules; 2022 Feb; 27(5):. PubMed ID: 35268582 [TBL] [Abstract][Full Text] [Related]
4. Treatment of agricultural wastewater using microalgae: A review. Li J; Li T; Sun D; Guan Y; Zhang Z Adv Appl Microbiol; 2024; 128():41-82. PubMed ID: 39059843 [TBL] [Abstract][Full Text] [Related]
5. Phycoremediation of phenol-polluted petro-industrial effluents and its techno-economic values as a win-win process for a green environment, sustainable energy and bioproducts. El-Gendy NS; Nassar HN J Appl Microbiol; 2021 Oct; 131(4):1621-1638. PubMed ID: 33386652 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for Nutrient Removal in Rice Mill Effluent (Paddy Soaked Water). Abinandan S; Bhattacharya R; Shanthakumar S Int J Phytoremediation; 2015; 17(1-6):377-81. PubMed ID: 25409251 [TBL] [Abstract][Full Text] [Related]
7. A Review of Microalgae- and Cyanobacteria-Based Biodegradation of Organic Pollutants. Touliabah HE; El-Sheekh MM; Ismail MM; El-Kassas H Molecules; 2022 Feb; 27(3):. PubMed ID: 35164405 [TBL] [Abstract][Full Text] [Related]
8. Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Acién FG; Gómez-Serrano C; Morales-Amaral MM; Fernández-Sevilla JM; Molina-Grima E Appl Microbiol Biotechnol; 2016 Nov; 100(21):9013-9022. PubMed ID: 27645298 [TBL] [Abstract][Full Text] [Related]
10. Cultivation of microalgae in dairy farm wastewater without sterilization. Ding J; Zhao F; Cao Y; Xing L; Liu W; Mei S; Li S Int J Phytoremediation; 2015; 17(1-6):222-7. PubMed ID: 25397979 [TBL] [Abstract][Full Text] [Related]
11. Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production. Chokshi K; Pancha I; Ghosh A; Mishra S Bioresour Technol; 2016 Dec; 221():455-460. PubMed ID: 27668878 [TBL] [Abstract][Full Text] [Related]
12. Integration of microalgal cultivation system for wastewater remediation and sustainable biomass production. Gupta PL; Lee SM; Choi HJ World J Microbiol Biotechnol; 2016 Aug; 32(8):139. PubMed ID: 27357407 [TBL] [Abstract][Full Text] [Related]
13. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Hejna M; Kapuścińska D; Aksmann A Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805373 [TBL] [Abstract][Full Text] [Related]
14. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Shahid A; Malik S; Zhu H; Xu J; Nawaz MZ; Nawaz S; Asraful Alam M; Mehmood MA Sci Total Environ; 2020 Feb; 704():135303. PubMed ID: 31818584 [TBL] [Abstract][Full Text] [Related]
15. Recent advances in remediation strategies for mitigating the impacts of emerging pollutants in water and ensuring environmental sustainability. Peer Muhamed Noorani KR; Flora G; Surendarnath S; Mary Stephy G; Amesho KTT; Chinglenthoiba C; Thajuddin N J Environ Manage; 2024 Feb; 351():119674. PubMed ID: 38061098 [TBL] [Abstract][Full Text] [Related]
16. Microalgae-mediated bioremediation: current trends and opportunities-a review. Ali SS; Hassan LHS; El-Sheekh M Arch Microbiol; 2024 Jul; 206(8):343. PubMed ID: 38967670 [TBL] [Abstract][Full Text] [Related]
17. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment. Abinandan S; Subashchandrabose SR; Venkateswarlu K; Megharaj M Crit Rev Biotechnol; 2018 Dec; 38(8):1244-1260. PubMed ID: 29768936 [TBL] [Abstract][Full Text] [Related]
18. Phycoremediation for carbon neutrality and circular economy: Potential, trends, and challenges. Rambabu K; Avornyo A; Gomathi T; Thanigaivelan A; Show PL; Banat F Bioresour Technol; 2023 Jan; 367():128257. PubMed ID: 36343781 [TBL] [Abstract][Full Text] [Related]
19. Algae as a green technology for heavy metals removal from various wastewater. Salama ES; Roh HS; Dev S; Khan MA; Abou-Shanab RAI; Chang SW; Jeon BH World J Microbiol Biotechnol; 2019 May; 35(5):75. PubMed ID: 31053951 [TBL] [Abstract][Full Text] [Related]
20. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Guo WQ; Zheng HS; Li S; Du JS; Feng XC; Yin RL; Wu QL; Ren NQ; Chang JS Bioresour Technol; 2016 Dec; 221():284-290. PubMed ID: 27643737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]