BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 25837563)

  • 1. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil.
    Chang JS; Cha DK; Radosevich M; Jin Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(6):611-6. PubMed ID: 25837563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria.
    Dean SM; Jin Y; Cha DK; Wilson SV; Radosevich M
    J Environ Qual; 2001; 30(4):1126-33. PubMed ID: 11476488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different bioavailability of phenanthrene to two bacterial species and effects of trehalose lipids on the bioavailability.
    Chang JS; Cha DK; Radosevich M; Jin Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(3):326-332. PubMed ID: 31941392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries.
    Gottfried A; Singhal N; Elliot R; Swift S
    Appl Microbiol Biotechnol; 2010 May; 86(5):1563-71. PubMed ID: 20146061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of soil phenanthrene degradation through a fungal-bacterial consortium.
    Luo C; Guan G; Dai Y; Cai X; Huang Q; Li J; Zhang G
    Appl Environ Microbiol; 2024 Jun; 90(6):e0066224. PubMed ID: 38752833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant.
    Lin W; Guo C; Zhang H; Liang X; Wei Y; Lu G; Dang Z
    Appl Biochem Biotechnol; 2016 Apr; 178(7):1325-38. PubMed ID: 26683200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on
    Wolf DC; Gan J
    Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.
    Zhao Z; Wong JW
    Environ Technol; 2009 Mar; 30(3):291-9. PubMed ID: 19438062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of pyrene and phenanthrene by bacterial consortium and evaluation of role of surfactant.
    Kumari B; Rajput S; Gaur P; Singh SN; Singh DP
    Cell Mol Biol (Noisy-le-grand); 2014 Dec; 60(5):22-8. PubMed ID: 25535708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of phenanthrene solubilization and biodegradation by trehalose lipid biosurfactants.
    Chang JS; Radosevich M; Jin Y; Cha DK
    Environ Toxicol Chem; 2004 Dec; 23(12):2816-22. PubMed ID: 15648754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The influence on the biodegradation of phenanthrene by nonionic surfactant, Tween20].
    Yang JG; Liu X; Yu G; Long T; She P; Liu Z
    Huan Jing Ke Xue; 2004 Jan; 25(1):53-6. PubMed ID: 15330421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils.
    Wolf DC; Cryder Z; Gan J
    Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization-biodegradation process.
    Shin KH; Kim KW; Ahn Y
    J Hazard Mater; 2006 Oct; 137(3):1831-7. PubMed ID: 16787705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubilization and desorption of PAHs in soil-aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition.
    Cheng KY; Zhao ZY; Wong JW
    Environ Technol; 2004 Oct; 25(10):1159-65. PubMed ID: 15551830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons.
    Aitken MD; Stringfellow WT; Nagel RD; Kazunga C; Chen SH
    Can J Microbiol; 1998 Aug; 44(8):743-52. PubMed ID: 9830104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PAH degradation capacity of soil microbial communities--does it depend on PAH exposure?
    Johnsen AR; Karlson U
    Microb Ecol; 2005 Nov; 50(4):488-95. PubMed ID: 16328660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of surfactant addition on the biomineralization and microbial toxicity of phenanthrene.
    Bramwell DP; Laha S
    Biodegradation; 2000; 11(4):263-77. PubMed ID: 11432584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil.
    Crampon M; Cébron A; Portet-Koltalo F; Uroz S; Le Derf F; Bodilis J
    Environ Pollut; 2017 Jun; 225():663-673. PubMed ID: 28390702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation.
    Sun R; Belcher RW; Liang J; Wang L; Thater B; Crowley DE; Wei G
    J Environ Sci (China); 2015 Jul; 33():45-59. PubMed ID: 26141877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA stable isotope probing reveals contrasted activity and phenanthrene-degrading bacteria identity in a gradient of anthropized soils.
    Lemmel F; Maunoury-Danger F; Leyval C; Cébron A
    FEMS Microbiol Ecol; 2019 Dec; 95(12):. PubMed ID: 31730156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.