BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25837592)

  • 1. A TatABC-type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032.
    Oertel D; Schmitz S; Freudl R
    PLoS One; 2015; 10(4):e0123413. PubMed ID: 25837592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB.
    Blaudeck N; Kreutzenbeck P; Müller M; Sprenger GA; Freudl R
    J Biol Chem; 2005 Feb; 280(5):3426-32. PubMed ID: 15557327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in
    Fröbel J; Blümmel AS; Drepper F; Warscheid B; Müller M
    J Biol Chem; 2019 Sep; 294(38):13902-13914. PubMed ID: 31341014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869.
    Kikuchi Y; Date M; Itaya H; Matsui K; Wu LF
    Appl Environ Microbiol; 2006 Nov; 72(11):7183-92. PubMed ID: 16997984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location and mobility of twin arginine translocase subunits in the Escherichia coli plasma membrane.
    Ray N; Nenninger A; Mullineaux CW; Robinson C
    J Biol Chem; 2005 May; 280(18):17961-8. PubMed ID: 15728576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion.
    Kikuchi Y; Itaya H; Date M; Matsui K; Wu LF
    Appl Environ Microbiol; 2009 Feb; 75(3):603-7. PubMed ID: 19074606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twin arginine translocation (Tat)-dependent export in the apparent absence of TatABC or TatA complexes using modified Escherichia coli TatA subunits that substitute for TatB.
    Barrett CM; Freudl R; Robinson C
    J Biol Chem; 2007 Dec; 282(50):36206-13. PubMed ID: 17881358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt sensitivity of minimal twin arginine translocases.
    van der Ploeg R; Barnett JP; Vasisht N; Goosens VJ; Pöther DC; Robinson C; van Dijl JM
    J Biol Chem; 2011 Dec; 286(51):43759-43770. PubMed ID: 22041895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate-dependent assembly of the Tat translocase as observed in live Escherichia coli cells.
    Rose P; Fröbel J; Graumann PL; Müller M
    PLoS One; 2013; 8(8):e69488. PubMed ID: 23936332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two minimal Tat translocases in Bacillus.
    Jongbloed JD; Grieger U; Antelmann H; Hecker M; Nijland R; Bron S; van Dijl JM
    Mol Microbiol; 2004 Dec; 54(5):1319-25. PubMed ID: 15554971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase.
    Huang Q; Alcock F; Kneuper H; Deme JC; Rollauer SE; Lea SM; Berks BC; Palmer T
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1958-E1967. PubMed ID: 28223511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a TatA/TatB binding site on the TatC component of the
    Severi E; Bunoro Batista M; Lannoy A; Stansfeld PJ; Palmer T
    Microbiology (Reading); 2023 Feb; 169(2):. PubMed ID: 36790402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of Folded Proteins by the Tat System.
    Frain KM; Robinson C; van Dijl JM
    Protein J; 2019 Aug; 38(4):377-388. PubMed ID: 31401776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes.
    Barnett JP; Eijlander RT; Kuipers OP; Robinson C
    J Biol Chem; 2008 Feb; 283(5):2534-42. PubMed ID: 18029357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The TatA component of the twin-arginine translocation system locally weakens the cytoplasmic membrane of
    Hou B; Heidrich ES; Mehner-Breitfeld D; Brüser T
    J Biol Chem; 2018 May; 293(20):7592-7605. PubMed ID: 29535185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional association of the stress-responsive LiaH protein and the minimal TatAyCy protein translocase in Bacillus subtilis.
    Bernal-Cabas M; Miethke M; Antelo-Varela M; Aguilar Suárez R; Neef J; Schön L; Gabarrini G; Otto A; Becher D; Wolf D; van Dijl JM
    Biochim Biophys Acta Mol Cell Res; 2020 Aug; 1867(8):118719. PubMed ID: 32302670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression level of heterologous tat genes is crucial for in vivo reconstitution of a functional Tat translocase in Escherichia coli.
    Xiong Y; Santini CL; Kan B; Xu J; Filloux A; Wu LF
    Biochimie; 2007 May; 89(5):676-85. PubMed ID: 17336443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-triggered position switching of TatA and TatB during Tat transport in
    Habersetzer J; Moore K; Cherry J; Buchanan G; Stansfeld PJ; Palmer T
    Open Biol; 2017 Aug; 7(8):. PubMed ID: 28814647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of protein-protein interactions between the TatB and TatC subunits of the twin-arginine translocase system and respiratory enzyme specific chaperones.
    Kuzniatsova L; Winstone TM; Turner RJ
    Biochim Biophys Acta; 2016 Apr; 1858(4):767-75. PubMed ID: 26826271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TatE as a Regular Constituent of Bacterial Twin-arginine Protein Translocases.
    Eimer E; Fröbel J; Blümmel AS; Müller M
    J Biol Chem; 2015 Dec; 290(49):29281-9. PubMed ID: 26483541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.