These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25837631)

  • 1. Development of an efficient electroporation method for iturin A-producing Bacillus subtilis ZK.
    Zhang Z; Ding ZT; Shu D; Luo D; Tan H
    Int J Mol Sci; 2015 Apr; 16(4):7334-51. PubMed ID: 25837631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the electro-transformation conditions of improving transformation efficiency for Bacillus subtilis.
    Lu YP; Zhang C; Lv FX; Bie XM; Lu ZX
    Lett Appl Microbiol; 2012 Jul; 55(1):9-14. PubMed ID: 22486381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmid transformation in Bacillus subtilis NB22, an antifungal-antibiotic iturin producer.
    Matsuno Y; Hiraoka H; Ano T; Shoda M
    FEMS Microbiol Lett; 1990 Jan; 55(1-2):227-9. PubMed ID: 2109723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High transformation efficiency of Bacillus subtilis with integrative DNA using glycine betaine as osmoprotectant.
    Meddeb-Mouelhi F; Dulcey C; Beauregard M
    Anal Biochem; 2012 May; 424(2):127-9. PubMed ID: 22387342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of plasmid electrotransformation into Bacillus subtilis using an antibacterial peptide.
    Mohamadzadeh M; Ghiasi M; Aghamollaei H
    Arch Microbiol; 2024 Feb; 206(3):116. PubMed ID: 38388903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified electro-transformation method for Bacillus subtilis and its application in the production of antimicrobial lipopeptides.
    Cao G; Zhang X; Zhong L; Lu Z
    Biotechnol Lett; 2011 May; 33(5):1047-51. PubMed ID: 21267761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroporation is a feasible method to introduce circularized or linearized DNA into B. subtilis chromosome.
    Yang MM; Zhang WW; Bai XT; Li HX; Cen PL
    Mol Biol Rep; 2010 Jun; 37(5):2207-13. PubMed ID: 19669928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of plasmid DNA sizes and several other factors on transformation of Bacillus subtilis ISW1214 with plasmid DNA by electroporation.
    Ohse M; Takahashi K; Kadowaki Y; Kusaoke H
    Biosci Biotechnol Biochem; 1995 Aug; 59(8):1433-7. PubMed ID: 7549093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of iturin A production in Bacillus subtilis ZK0 by overexpression of the comA and sigA genes.
    Zhang Z; Ding ZT; Zhong J; Zhou JY; Shu D; Luo D; Yang J; Tan H
    Lett Appl Microbiol; 2017 Jun; 64(6):452-458. PubMed ID: 28374547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic transformation of intact cells of Bacillus subtilis by electroporation.
    Brigidi P; De Rossi E; Bertarini ML; Riccardi G; Matteuzzi D
    FEMS Microbiol Lett; 1990 Jan; 55(1-2):135-8. PubMed ID: 2109718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors affecting the electroporation of Bacillus subtilis.
    McDonald IR; Riley PW; Sharp RJ; McCarthy AJ
    J Appl Bacteriol; 1995 Aug; 79(2):213-8. PubMed ID: 7592117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on lipopeptide biosynthesis by Bacillus subtilis: isolation and characterization of iturin-, surfactin+ mutants.
    Feignier C; Besson F; Michel G
    FEMS Microbiol Lett; 1995 Mar; 127(1-2):11-5. PubMed ID: 7737471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an efficient electroporation method for rhizobacterial Bacillus mycoides strains.
    Yi Y; Kuipers OP
    J Microbiol Methods; 2017 Feb; 133():82-86. PubMed ID: 28042055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis.
    Yao S; Gao X; Fuchsbauer N; Hillen W; Vater J; Wang J
    Curr Microbiol; 2003 Oct; 47(4):272-7. PubMed ID: 14629006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient transformation method for Bacillus subtilis DB104.
    Vojcic L; Despotovic D; Martinez R; Maurer KH; Schwaneberg U
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):487-93. PubMed ID: 22395911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Iturin A Production of Engineered
    Hou ZJ; Cao CY; Gao GR; Ding MZ; Xu QM; Cheng JS
    J Agric Food Chem; 2024 May; 72(20):11577-11586. PubMed ID: 38721818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Preparation and transformation optimization for supercompetent B. subtilis SCK6 cells].
    Li X; Lu Z; Zhou Y; Li S; Zhang G
    Sheng Wu Gong Cheng Xue Bao; 2017 Apr; 33(4):692-698. PubMed ID: 28920402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer.
    Tsuge K; Inoue S; Ano T; Itaya M; Shoda M
    Antimicrob Agents Chemother; 2005 Nov; 49(11):4641-8. PubMed ID: 16251307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm fermentation of iturin A by a recombinant strain of Bacillus subtilis 168.
    Rahman MS; Ano T; Shoda M
    J Biotechnol; 2007 Jan; 127(3):503-7. PubMed ID: 16942812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis.
    Zhang XZ; Zhang Y-
    Microb Biotechnol; 2011 Jan; 4(1):98-105. PubMed ID: 21255377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.