These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 25837701)

  • 1. Geometry-controllable graphene layers and their application for supercapacitors.
    Lee S; Lee SH; Kim TH; Cho M; Yoo JB; Kim TI; Lee Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8070-5. PubMed ID: 25837701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.
    Sekar P; Anothumakkool B; Kurungot S
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7661-9. PubMed ID: 25783045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible and stackable laser-induced graphene supercapacitors.
    Peng Z; Lin J; Ye R; Samuel EL; Tour JM
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3414-9. PubMed ID: 25584857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.
    Wu L; Li W; Li P; Liao S; Qiu S; Chen M; Guo Y; Li Q; Zhu C; Liu L
    Small; 2014 Apr; 10(7):1421-9. PubMed ID: 24323826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercapacitors based on self-assembled graphene organogel.
    Sun Y; Wu Q; Shi G
    Phys Chem Chem Phys; 2011 Oct; 13(38):17249-54. PubMed ID: 21879072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance.
    Jung SM; Mafra DL; Lin CT; Jung HY; Kong J
    Nanoscale; 2015 Mar; 7(10):4386-93. PubMed ID: 25682978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.
    Luan F; Wang G; Ling Y; Lu X; Wang H; Tong Y; Liu XX; Li Y
    Nanoscale; 2013 Sep; 5(17):7984-90. PubMed ID: 23864110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Templated 3D ultrathin CVD graphite networks with controllable geometry: synthesis and application as supercapacitor electrodes.
    Hsia B; Kim MS; Luna LE; Mair NR; Kim Y; Carraro C; Maboudian R
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18413-7. PubMed ID: 25318008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step electroplating porous graphene oxide electrodes of supercapacitors for ultrahigh capacitance and energy density.
    Wang Y; Zhu J
    Nanotechnology; 2015 Feb; 26(5):055401. PubMed ID: 25590896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications.
    Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S
    ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts.
    Parvez K; Wu ZS; Li R; Liu X; Graf R; Feng X; Müllen K
    J Am Chem Soc; 2014 Apr; 136(16):6083-91. PubMed ID: 24684678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors.
    Moon GD; Joo JB; Yin Y
    Nanoscale; 2013 Dec; 5(23):11577-81. PubMed ID: 24114351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes.
    Wang H; Sun X; Liu Z; Lei Z
    Nanoscale; 2014 Jun; 6(12):6577-84. PubMed ID: 24801794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of nickel network supported three-dimensional graphene gel as a lightweight and binder-free electrode for high rate performance supercapacitor application.
    Huang H; Xu L; Tang Y; Tang S; Du Y
    Nanoscale; 2014 Feb; 6(4):2426-33. PubMed ID: 24441914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor.
    Lee JS; Kim SI; Yoon JC; Jang JH
    ACS Nano; 2013 Jul; 7(7):6047-55. PubMed ID: 23782238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.
    Wang G; Sun X; Lu F; Sun H; Yu M; Jiang W; Liu C; Lian J
    Small; 2012 Feb; 8(3):452-9. PubMed ID: 22162371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nickel hydroxide-coated 3D porous graphene hollow sphere framework as a high performance electrode material for supercapacitors.
    Zhang F; Zhu D; Chen X; Xu X; Yang Z; Zou C; Yang K; Huang S
    Phys Chem Chem Phys; 2014 Mar; 16(9):4186-92. PubMed ID: 24452101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable growth of CNTs on graphene as high-performance electrode material for supercapacitors.
    Yang ZY; Zhao YF; Xiao QQ; Zhang YX; Jing L; Yan YM; Sun KN
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8497-504. PubMed ID: 24833408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-based nanowire supercapacitors.
    Chen Z; Yu D; Xiong W; Liu P; Liu Y; Dai L
    Langmuir; 2014 Apr; 30(12):3567-71. PubMed ID: 24588395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors.
    Li ZF; Zhang H; Liu Q; Sun L; Stanciu L; Xie J
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2685-91. PubMed ID: 23480549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.