These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 25838297)
1. Hybrid rotors in F1F(o) ATP synthases: subunit composition, distribution, and physiological significance. Brandt K; Müller V Biol Chem; 2015 Sep; 396(9-10):1031-42. PubMed ID: 25838297 [TBL] [Abstract][Full Text] [Related]
2. Stoichiometry and deletion analyses of subunits in the heterotrimeric F-ATP synthase c ring from the acetogenic bacterium Acetobacterium woodii. Brandt K; Müller DB; Hoffmann J; Langer JD; Brutschy B; Morgner N; Müller V FEBS J; 2016 Feb; 283(3):510-20. PubMed ID: 26613566 [TBL] [Abstract][Full Text] [Related]
3. Functional production of the Na+ F1F(O) ATP synthase from Acetobacterium woodii in Escherichia coli requires the native AtpI. Brandt K; Müller DB; Hoffmann J; Hübert C; Brutschy B; Deckers-Hebestreit G; Müller V J Bioenerg Biomembr; 2013 Feb; 45(1-2):15-23. PubMed ID: 23054076 [TBL] [Abstract][Full Text] [Related]
4. An intermediate step in the evolution of ATPases: a hybrid F(0)-V(0) rotor in a bacterial Na(+) F(1)F(0) ATP synthase. Fritz M; Klyszejko AL; Morgner N; Vonck J; Brutschy B; Muller DJ; Meier T; Müller V FEBS J; 2008 May; 275(9):1999-2007. PubMed ID: 18355313 [TBL] [Abstract][Full Text] [Related]
5. The transmembrane domain of subunit b of the Escherichia coli F1F(O) ATP synthase is sufficient for H(+)-translocating activity together with subunits a and c. Greie JC; Heitkamp T; Altendorf K Eur J Biochem; 2004 Jul; 271(14):3036-42. PubMed ID: 15233800 [TBL] [Abstract][Full Text] [Related]
6. The structural features of Acetobacterium woodii F-ATP synthase reveal the importance of the unique subunit γ-loop in Na Bogdanović N; Trifunović D; Sielaff H; Westphal L; Bhushan S; Müller V; Grüber G FEBS J; 2019 May; 286(10):1894-1907. PubMed ID: 30791207 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit. Keis S; Stocker A; Dimroth P; Cook GM J Bacteriol; 2006 Jun; 188(11):3796-804. PubMed ID: 16707672 [TBL] [Abstract][Full Text] [Related]
8. ATP synthases with novel rotor subunits: new insights into structure, function and evolution of ATPases. Müller V; Lingl A; Lewalter K; Fritz M J Bioenerg Biomembr; 2005 Dec; 37(6):455-60. PubMed ID: 16691483 [TBL] [Abstract][Full Text] [Related]
9. A specific adaptation in the a subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. McMillan DG; Keis S; Dimroth P; Cook GM J Biol Chem; 2007 Jun; 282(24):17395-404. PubMed ID: 17434874 [TBL] [Abstract][Full Text] [Related]
10. The Na(+)-translocating F₁F₀-ATPase from the halophilic, alkalithermophile Natranaerobius thermophilus. Mesbah NM; Wiegel J Biochim Biophys Acta; 2011 Sep; 1807(9):1133-42. PubMed ID: 21600188 [TBL] [Abstract][Full Text] [Related]
11. High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na⁺-coupled ATP synthase. Matthies D; Zhou W; Klyszejko AL; Anselmi C; Yildiz Ö; Brandt K; Müller V; Faraldo-Gómez JD; Meier T Nat Commun; 2014 Nov; 5():5286. PubMed ID: 25381992 [TBL] [Abstract][Full Text] [Related]
12. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. Balabaskaran Nina P; Dudkina NV; Kane LA; van Eyk JE; Boekema EJ; Mather MW; Vaidya AB PLoS Biol; 2010 Jul; 8(7):e1000418. PubMed ID: 20644710 [TBL] [Abstract][Full Text] [Related]
13. An intermediate step in the evolution of ATPases--the F1F0-ATPase from Acetobacterium woodii contains F-type and V-type rotor subunits and is capable of ATP synthesis. Fritz M; Müller V FEBS J; 2007 Jul; 274(13):3421-8. PubMed ID: 17555523 [TBL] [Abstract][Full Text] [Related]
14. 3D reconstruction and flexibility of the hybrid engine Acetobacterium woodii F-ATP synthase. Kamariah N; Huber RG; Bond PJ; Müller V; Grüber G Biochem Biophys Res Commun; 2020 Jun; 527(2):518-524. PubMed ID: 32423799 [TBL] [Abstract][Full Text] [Related]
15. Subunit E of mitochondrial ATP synthase: a bioinformatic analysis reveals a phosphopeptide binding motif supporting a multifunctional regulatory role and identifies a related human brain protein with the same motif. Hong S; Pedersen PL Proteins; 2003 May; 51(2):155-61. PubMed ID: 12660984 [TBL] [Abstract][Full Text] [Related]
16. The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural region. Matthies D; Preiss L; Klyszejko AL; Muller DJ; Cook GM; Vonck J; Meier T J Mol Biol; 2009 May; 388(3):611-8. PubMed ID: 19327366 [TBL] [Abstract][Full Text] [Related]
17. Atypical subunit composition of the chlorophycean mitochondrial F1FO-ATP synthase and role of Asa7 protein in stability and oligomycin resistance of the enzyme. Lapaille M; Escobar-Ramírez A; Degand H; Baurain D; Rodríguez-Salinas E; Coosemans N; Boutry M; Gonzalez-Halphen D; Remacle C; Cardol P Mol Biol Evol; 2010 Jul; 27(7):1630-44. PubMed ID: 20156838 [TBL] [Abstract][Full Text] [Related]
18. Role of gamma-subunit N- and C-termini in assembly of the mitochondrial ATP synthase in yeast. Dian EA; Papatheodorou P; Emmrich K; Randel O; Geissler A; Kölling R; Rassow J; Motz C J Mol Biol; 2008 Apr; 377(5):1314-23. PubMed ID: 18328502 [TBL] [Abstract][Full Text] [Related]
19. Location of subunit d in the peripheral stalk of the ATP synthase from Saccharomyces cerevisiae. Bueler SA; Rubinstein JL Biochemistry; 2008 Nov; 47(45):11804-10. PubMed ID: 18937496 [TBL] [Abstract][Full Text] [Related]
20. Functional incorporation of chimeric b subunits into F1Fo ATP synthase. Claggett SB; Grabar TB; Dunn SD; Cain BD J Bacteriol; 2007 Aug; 189(15):5463-71. PubMed ID: 17526709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]