These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25838419)

  • 1. At-sea trial of 24-h-based submarine watchstanding schedules with high and low correlated color temperature light sources.
    Young CR; Jones GE; Figueiro MG; Soutière SE; Keller MW; Richardson AM; Lehmann BJ; Rea MS
    J Biol Rhythms; 2015 Apr; 30(2):144-54. PubMed ID: 25838419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life onboard a submarine: Sleep, fatigue, and lifestyle behaviors of sailors on a circadian-aligned watchstanding schedule.
    Chabal SA; Markwald RR; Chinoy ED
    Appl Ergon; 2024 Sep; 119():104321. PubMed ID: 38820921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-wavelength attenuated polychromatic white light during work at night: limited melatonin suppression without substantial decline of alertness.
    van de Werken M; Giménez MC; de Vries B; Beersma DG; Gordijn MC
    Chronobiol Int; 2013 Aug; 30(7):843-54. PubMed ID: 23705821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of a new dynamic light regimen in a nuclear power control room without windows on quickly rotating shiftworkers--effects on health, wakefulness, and circadian alignment: a pilot study.
    Lowden A; Åkerstedt T
    Chronobiol Int; 2012 Jun; 29(5):641-9. PubMed ID: 22621361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course of neurobehavioral alertness during extended wakefulness in morning- and evening-type healthy sleepers.
    Taillard J; Philip P; Claustrat B; Capelli A; Coste O; Chaumet G; Sagaspe P
    Chronobiol Int; 2011 Jul; 28(6):520-7. PubMed ID: 21797780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phototherapy and orange-tinted goggles for night-shift adaptation of police officers on patrol.
    Boivin DB; Boudreau P; Tremblay GM
    Chronobiol Int; 2012 Jun; 29(5):629-40. PubMed ID: 22621360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive decrease of melatonin production over consecutive days of simulated night work.
    Dumont M; Paquet J
    Chronobiol Int; 2014 Dec; 31(10):1231-8. PubMed ID: 25222345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep duration, nightshift work, and the timing of meals and urinary levels of 8-isoprostane and 6-sulfatoxymelatonin in Japanese women.
    Nagata C; Tamura T; Wada K; Konishi K; Goto Y; Nagao Y; Ishihara K; Yamamoto S
    Chronobiol Int; 2017; 34(9):1187-1196. PubMed ID: 28933565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian phase, sleepiness, and light exposure assessment in night workers with and without shift work disorder.
    Gumenyuk V; Roth T; Drake CL
    Chronobiol Int; 2012 Aug; 29(7):928-36. PubMed ID: 22823876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of rotation interval on sleepiness and circadian dynamics on forward rotating 3-shift systems.
    Postnova S; Postnov DD; Seneviratne M; Robinson PA
    J Biol Rhythms; 2014 Feb; 29(1):60-70. PubMed ID: 24492883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleepiness and sleep in a simulated "six hours on/six hours off" sea watch system.
    Eriksen CA; Gillberg M; Vestergren P
    Chronobiol Int; 2006; 23(6):1193-202. PubMed ID: 17190705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD
    Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring sleepiness and entrainment on permanent shift schedules in a physiologically based model.
    Postnova S; Layden A; Robinson PA; Phillips AJ; Abeysuriya RG
    J Biol Rhythms; 2012 Feb; 27(1):91-102. PubMed ID: 22306977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling light-dark exposure patterns rather than sleep schedules determines circadian phase.
    Appleman K; Figueiro MG; Rea MS
    Sleep Med; 2013 May; 14(5):456-61. PubMed ID: 23481485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green light attenuates melatonin output and sleepiness during sleep deprivation.
    Horne JA; Donlon J; Arendt J
    Sleep; 1991 Jun; 14(3):233-40. PubMed ID: 1896724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep and performance in simulated Navy watch schedules.
    Skornyakov E; Shattuck NL; Winser MA; Matsangas P; Sparrow AR; Layton ME; Gabehart RJ; Van Dongen HP
    Accid Anal Prev; 2017 Feb; 99(Pt B):422-427. PubMed ID: 26691014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The submariners' sleep study: a field investigation of sleep and circadian hormones during a 67-day submarine mission with a strict 6-h-on/6-h-off watch routine.
    Van Puyvelde M; Rietjens G; Helmhout P; Mairesse O; Van Cutsem J; Pattyn N
    J Appl Physiol (1985); 2022 Apr; 132(4):1069-1079. PubMed ID: 35142558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: A field study.
    Motamedzadeh M; Golmohammadi R; Kazemi R; Heidarimoghadam R
    Physiol Behav; 2017 Aug; 177():208-214. PubMed ID: 28495465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can short-wavelength depleted bright light during single simulated night shifts prevent circadian phase shifts?
    Regente J; de Zeeuw J; Bes F; Nowozin C; Appelhoff S; Wahnschaffe A; Münch M; Kunz D
    Appl Ergon; 2017 May; 61():22-30. PubMed ID: 28237017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep and circadian phase in a ship's crew.
    Arendt J; Middleton B; Williams P; Francis G; Luke C
    J Biol Rhythms; 2006 Jun; 21(3):214-21. PubMed ID: 16731661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.