These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 25838528)

  • 1. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.
    Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger.
    Salvietti G; Hussain I; Cioncoloni D; Taddei S; Rossi S; Prattichizzo D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):142-150. PubMed ID: 26890911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.
    Ockenfeld C; Tong RK; Susanto EA; Ho SK; Hu XL
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650392. PubMed ID: 24187211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors.
    Shi XQ; Heung HL; Tang ZQ; Li Z; Tong KY
    J Stroke Cerebrovasc Dis; 2021 Jul; 30(7):105812. PubMed ID: 33895427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection.
    Castiblanco JC; Mondragon IF; Alvarado-Rojas C; Colorado JD
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoelectrically controlled wrist robot for stroke rehabilitation.
    Song R; Tong KY; Hu X; Zhou W
    J Neuroeng Rehabil; 2013 Jun; 10():52. PubMed ID: 23758925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rehabilitation device to improve the hand grasp function of stroke patients using a patient-driven approach.
    Park W; Jeong W; Kwon GH; Kim YH; Kim L
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650482. PubMed ID: 24187299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of EMG signals for controlling exoskeleton robots.
    Fleischer C; Wege A; Kondak K; Hommel G
    Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft Robotic Bilateral Hand Rehabilitation System for Fine Motor Learning
    Haghshenas-Jaryani M; Pande C; Muthu Wijesundara BJ
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():337-342. PubMed ID: 31374652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a 3D Printed Soft Robotic Hand for Stroke Rehabilitation and Daily Activities Assistance.
    Heung KHL; Tang ZQ; Ho L; Tung M; Li Z; Tong RKY
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():65-70. PubMed ID: 31374608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on an Exoskeleton Hand Function Training Device].
    Hu X; Zhang Y; Li J; Yi J; Yu H; He R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):23-30. PubMed ID: 27382735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke.
    Meeker C; Park S; Bishop L; Stein J; Ciocarlie M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1203-1210. PubMed ID: 28813985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke.
    Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N
    J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Evaluation of a Soft and Wearable Robotic Glove for Hand Rehabilitation.
    Biggar S; Yao W
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1071-1080. PubMed ID: 26829796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jointless structure and under-actuation mechanism for compact hand exoskeleton.
    In H; Cho KJ; Kim K; Lee B
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975394. PubMed ID: 22275598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hand Rehabilitation Learning System With an Exoskeleton Robotic Glove.
    Ma Z; Ben-Tzvi P; Danoff J
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1323-1332. PubMed ID: 26595925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies.
    Burns MK; Pei D; Vinjamuri R
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intelligent Object Grasping With Sensor Fusion for Rehabilitation and Assistive Applications.
    Lee BJB; Williams A; Ben-Tzvi P
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1556-1565. PubMed ID: 29994121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.