These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 25839065)
1. Pore collapse and regrowth in silicon electrodes for rechargeable batteries. DeCaluwe SC; Dhar BM; Huang L; He Y; Yang K; Owejan JP; Zhao Y; Talin AA; Dura JA; Wang H Phys Chem Chem Phys; 2015 May; 17(17):11301-12. PubMed ID: 25839065 [TBL] [Abstract][Full Text] [Related]
2. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries. Cao C; Shyam B; Wang J; Toney MF; Steinrück HG Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242 [TBL] [Abstract][Full Text] [Related]
3. Lithiation of Crystalline Silicon As Analyzed by Operando Neutron Reflectivity. Seidlhofer BK; Jerliu B; Trapp M; Hüger E; Risse S; Cubitt R; Schmidt H; Steitz R; Ballauff M ACS Nano; 2016 Aug; 10(8):7458-66. PubMed ID: 27447734 [TBL] [Abstract][Full Text] [Related]
4. Solid Electrolyte Interphase Layer Formation during Lithiation of Single-Crystal Silicon Electrodes with a Protective Aluminum Oxide Coating. Ronneburg A; Silvi L; Cooper J; Harbauer K; Ballauff M; Risse S ACS Appl Mater Interfaces; 2021 May; 13(18):21241-21249. PubMed ID: 33909399 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes. Hasa I; Haregewoin AM; Zhang L; Tsai WY; Guo J; Veith GM; Ross PN; Kostecki R ACS Appl Mater Interfaces; 2020 Sep; 12(36):40879-40890. PubMed ID: 32805823 [TBL] [Abstract][Full Text] [Related]
6. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries. Reyes Jiménez A; Klöpsch R; Wagner R; Rodehorst UC; Kolek M; Nölle R; Winter M; Placke T ACS Nano; 2017 May; 11(5):4731-4744. PubMed ID: 28437078 [TBL] [Abstract][Full Text] [Related]
7. Effect of lithiation potential and cycling on chemical and morphological evolution of Si thin film electrode studied by ToF-SIMS. Pereira-Nabais C; Światowska J; Rosso M; Ozanam F; Seyeux A; Gohier A; Tran-Van P; Cassir M; Marcus P ACS Appl Mater Interfaces; 2014 Aug; 6(15):13023-33. PubMed ID: 25058861 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical Lithiation and Delithiation in Amorphous Si Thin Film Electrodes Studied by Endo R; Ohnishi T; Takada K; Masuda T J Phys Chem Lett; 2022 Aug; 13(31):7363-7370. PubMed ID: 35924823 [TBL] [Abstract][Full Text] [Related]
9. Elucidating the Surface Reactions of an Amorphous Si Thin Film as a Model Electrode for Li-Ion Batteries. Ferraresi G; Czornomaz L; Villevieille C; Novák P; El Kazzi M ACS Appl Mater Interfaces; 2016 Nov; 8(43):29791-29798. PubMed ID: 27718552 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry. Fears TM; Doucet M; Browning JF; Baldwin JK; Winiarz JG; Kaiser H; Taub H; Sacci RL; Veith GM Phys Chem Chem Phys; 2016 May; 18(20):13927-40. PubMed ID: 27149427 [TBL] [Abstract][Full Text] [Related]
11. A step towards understanding the beneficial influence of a LIPON-based artificial SEI on silicon thin film anodes in lithium-ion batteries. Reyes Jiménez A; Nölle R; Wagner R; Hüsker J; Kolek M; Schmuch R; Winter M; Placke T Nanoscale; 2018 Jan; 10(4):2128-2137. PubMed ID: 29327023 [TBL] [Abstract][Full Text] [Related]
12. The Study of the Binder Poly(acrylic acid) and Its Role in Concomitant Solid-Electrolyte Interphase Formation on Si Anodes. Browning KL; Sacci RL; Doucet M; Browning JF; Kim JR; Veith GM ACS Appl Mater Interfaces; 2020 Feb; 12(8):10018-10030. PubMed ID: 31984725 [TBL] [Abstract][Full Text] [Related]
14. Silicon-Based Anodes with Long Cycle Life for Lithium-Ion Batteries Achieved by Significant Suppression of Their Volume Expansion in Ionic-Liquid Electrolyte. Domi Y; Usui H; Yamaguchi K; Yodoya S; Sakaguchi H ACS Appl Mater Interfaces; 2019 Jan; 11(3):2950-2960. PubMed ID: 30608119 [TBL] [Abstract][Full Text] [Related]
15. Nano-FTIR Spectroscopy of the Solid Electrolyte Interphase Layer on a Thin-Film Silicon Li-Ion Anode. Dopilka A; Gu Y; Larson JM; Zorba V; Kostecki R ACS Appl Mater Interfaces; 2023 Feb; 15(5):6755-6767. PubMed ID: 36696964 [TBL] [Abstract][Full Text] [Related]
16. Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries. Jerliu B; Dörrer L; Hüger E; Borchardt G; Steitz R; Geckle U; Oberst V; Bruns M; Schneider O; Schmidt H Phys Chem Chem Phys; 2013 May; 15(20):7777-84. PubMed ID: 23598350 [TBL] [Abstract][Full Text] [Related]
17. Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries. Li B; Yao F; Bae JJ; Chang J; Zamfir MR; Le DT; Pham DT; Yue H; Lee YH Sci Rep; 2015 Jan; 5():7659. PubMed ID: 25564245 [TBL] [Abstract][Full Text] [Related]
18. In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries. Tokranov A; Sheldon BW; Li C; Minne S; Xiao X ACS Appl Mater Interfaces; 2014 May; 6(9):6672-86. PubMed ID: 24670933 [TBL] [Abstract][Full Text] [Related]
19. Formation Processes of a Solid Electrolyte Interphase at a Silicon/Sulfide Electrolyte Interface in a Model All-Solid-State Li-Ion Battery. Asano S; Hata JI; Watanabe K; Shimizu K; Matsui N; Yamada NL; Suzuki K; Kanno R; Hirayama M ACS Appl Mater Interfaces; 2024 Feb; 16(6):7189-7199. PubMed ID: 38315660 [TBL] [Abstract][Full Text] [Related]
20. Investigation of Lithium Insertion Mechanisms of a Thin-Film Si Electrode by Coupling Time-of-Flight Secondary-Ion Mass Spectrometry, X-ray Photoelectron Spectroscopy, and Focused-Ion-Beam/SEM. Bordes A; De Vito E; Haon C; Secouard C; Montani A; Marcus P ACS Appl Mater Interfaces; 2015 Dec; 7(50):27853-62. PubMed ID: 26618212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]