These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 25839086)
1. Dual Mechanism Conceptual Model for Cr Isotope Fractionation during Reduction by Zerovalent Iron under Saturated Flow Conditions. Jamieson-Hanes JH; Amos RT; Blowes DW; Ptacek CJ Environ Sci Technol; 2015 May; 49(9):5467-75. PubMed ID: 25839086 [TBL] [Abstract][Full Text] [Related]
2. Chromium isotope fractionation during reduction of Cr(VI) under saturated flow conditions. Jamieson-Hanes JH; Gibson BD; Lindsay MB; Kim Y; Ptacek CJ; Blowes DW Environ Sci Technol; 2012 Jun; 46(12):6783-9. PubMed ID: 22676583 [TBL] [Abstract][Full Text] [Related]
3. Reactive transport modeling of chromium isotope fractionation during Cr(VI) reduction. Jamieson-Hanes JH; Amos RT; Blowes DW Environ Sci Technol; 2012 Dec; 46(24):13311-6. PubMed ID: 23153412 [TBL] [Abstract][Full Text] [Related]
4. Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Ellis AS; Johnson TM; Bullen TD Environ Sci Technol; 2004 Jul; 38(13):3604-7. PubMed ID: 15296311 [TBL] [Abstract][Full Text] [Related]
5. Two-stage chromium isotope fractionation during microbial Cr(VI) reduction. Chen G; Han J; Mu Y; Yu H; Qin L Water Res; 2019 Jan; 148():10-18. PubMed ID: 30343194 [TBL] [Abstract][Full Text] [Related]
6. Chromium isotope fractionation during Cr(VI) reduction in a methane-based hollow-fiber membrane biofilm reactor. Lu YZ; Chen GJ; Bai YN; Fu L; Qin LP; Zeng RJ Water Res; 2018 Mar; 130():263-270. PubMed ID: 29241112 [TBL] [Abstract][Full Text] [Related]
7. Chromium isotopic fractionation during Cr(VI) reduction by Bacillus sp. under aerobic conditions. Xu F; Ma T; Zhou L; Hu Z; Shi L Chemosphere; 2015 Jul; 130():46-51. PubMed ID: 25777078 [TBL] [Abstract][Full Text] [Related]
8. Fractionation of Selenium during Selenate Reduction by Granular Zerovalent Iron. Shrimpton HK; Blowes DW; Ptacek CJ Environ Sci Technol; 2015 Oct; 49(19):11688-96. PubMed ID: 26302231 [TBL] [Abstract][Full Text] [Related]
9. Chromium isotopes and the fate of hexavalent chromium in the environment. Ellis AS; Johnson TM; Bullen TD Science; 2002 Mar; 295(5562):2060-2. PubMed ID: 11896274 [TBL] [Abstract][Full Text] [Related]
10. Isotope fractionation and spectroscopic analysis as an evidence of Cr(VI) reduction during biosorption. Šillerová H; Chrastný V; Čadková E; Komárek M Chemosphere; 2014 Jan; 95():402-7. PubMed ID: 24139156 [TBL] [Abstract][Full Text] [Related]
11. Determination of hexavalent chromium reduction using Cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials. Basu A; Johnson TM Environ Sci Technol; 2012 May; 46(10):5353-60. PubMed ID: 22424120 [TBL] [Abstract][Full Text] [Related]
12. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy. Slejko FF; Petrini R; Lutman A; Forte C; Ghezzi L Isotopes Environ Health Stud; 2019 Mar; 55(1):56-69. PubMed ID: 30621468 [TBL] [Abstract][Full Text] [Related]
13. Isotope evidence of hexavalent chromium stability in ground water samples. Čadková E; Chrastný V Chemosphere; 2015 Nov; 138():74-80. PubMed ID: 26037819 [TBL] [Abstract][Full Text] [Related]
14. Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling. Wanner C; Zink S; Eggenberger U; Mäder U J Contam Hydrol; 2012 Apr; 131(1-4):54-63. PubMed ID: 22343010 [TBL] [Abstract][Full Text] [Related]
15. Cr(VI) removal from aqueous systems using pyrite as the reducing agent: batch, spectroscopic and column experiments. Kantar C; Ari C; Keskin S; Dogaroglu ZG; Karadeniz A; Alten A J Contam Hydrol; 2015 Mar; 174():28-38. PubMed ID: 25644191 [TBL] [Abstract][Full Text] [Related]
16. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Wilkin RT; Su C; Ford RG; Paul CJ Environ Sci Technol; 2005 Jun; 39(12):4599-605. PubMed ID: 16047798 [TBL] [Abstract][Full Text] [Related]
17. Using stable isotope fractionation factors to identify Cr(VI) reduction pathways: Metal-mineral-microbe interactions. Zhang Q; Amor K; Galer SJG; Thompson I; Porcelli D Water Res; 2019 Mar; 151():98-109. PubMed ID: 30594094 [TBL] [Abstract][Full Text] [Related]
18. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH. Gheju M; Iovi A; Balcu I J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460 [TBL] [Abstract][Full Text] [Related]
19. Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosol. Babechuk MG; Kleinhanns IC; Schoenberg R Geobiology; 2017 Jan; 15(1):30-50. PubMed ID: 27444369 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects. Melitas N; Chuffe-Moscoso O; Farrell J Environ Sci Technol; 2001 Oct; 35(19):3948-53. PubMed ID: 11642457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]