These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 25839184)

  • 21. Multifarious Plant Growth-Promoting Rhizobacterium
    Sharma A; Chakdar H; Vaishnav A; Srivastava AK; Khan N; Bansal YK; Kaushik R
    Front Biosci (Landmark Ed); 2023 Oct; 28(10):241. PubMed ID: 37919081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils.
    Saif S; Khan MS
    Environ Monit Assess; 2018 Apr; 190(5):290. PubMed ID: 29666936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differences between easy- and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part I: broad chemical composition.
    Wood JA; Knights EJ; Campbell GM; Choct M
    J Sci Food Agric; 2014 May; 94(7):1437-45. PubMed ID: 24122733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification of free arginine from chickpea (Cicer arietinum) seeds.
    Cortés-Giraldo I; Megías C; Alaiz M; Girón-Calle J; Vioque J
    Food Chem; 2016 Feb; 192():114-8. PubMed ID: 26304327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supplementary irrigations at different physiological growth stages of chickpea (Cicer arietinum L.) change grain nutritional composition.
    Varol IS; Kardes YM; Irik HA; Kirnak H; Kaplan M
    Food Chem; 2020 Jan; 303():125402. PubMed ID: 31470273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under As stress.
    Garg N; Cheema A
    Ecotoxicol Environ Saf; 2021 Jan; 207():111196. PubMed ID: 32890948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seed-Derived Microbial Community of Wild
    Lalzar M; Zeevi A; Frenkel O; Gamliel A; Abbo S; Iasur Kruh L
    Microbiol Spectr; 2022 Jun; 10(3):e0278521. PubMed ID: 35638782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenic accumulation in root and shoot vis-a-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L.
    Gupta DK; Tripathi RD; Mishra S; Srivastava S; Dwivedi S; Rai UN; Yang XE; Huanji H; Inouhe M
    J Environ Biol; 2008 May; 29(3):281-6. PubMed ID: 18972678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accumulation, translocation and conversion of six arsenic species in rice plants grown near a mine impacted city.
    Ma L; Wang L; Jia Y; Yang Z
    Chemosphere; 2017 Sep; 183():44-52. PubMed ID: 28531558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities.
    Singh A; Sarma BK; Upadhyay RS; Singh HB
    Microbiol Res; 2013 Jan; 168(1):33-40. PubMed ID: 22857806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acid phosphatase role in chickpea/maize intercropping.
    Li SM; Li L; Zhang FS; Tang C
    Ann Bot; 2004 Aug; 94(2):297-303. PubMed ID: 15238349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture.
    Khan N; Bano A; Babar MDA
    PLoS One; 2020; 15(4):e0231426. PubMed ID: 32271848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soil type influence nutrient availability, microbial metabolic diversity, eubacterial and diazotroph abundance in chickpea rhizosphere.
    Sneha GR; Swarnalakshmi K; Sharma M; Reddy K; Bhoumik A; Suman A; Kannepalli A
    World J Microbiol Biotechnol; 2021 Sep; 37(10):167. PubMed ID: 34468874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil.
    Khan N; Mishra A; Chauhan PS; Sharma YK; Nautiyal CS
    Antonie Van Leeuwenhoek; 2012 Feb; 101(2):453-9. PubMed ID: 21909789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp.
    Mukherjee A; Singh BK; Verma JP
    Microbiol Res; 2020 Aug; 237():126469. PubMed ID: 32251977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The chickpea, summer cropping, and a new model for pulse domestication in the ancient near east.
    Abbo S; Shtienberg D; Lichtenzveig J; Lev-Yadun S; Gopher A
    Q Rev Biol; 2003 Dec; 78(4):435-48. PubMed ID: 14737827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L.
    Amin A; Latif Z
    J Basic Microbiol; 2017 Mar; 57(3):204-217. PubMed ID: 27911010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.).
    Saha S; Chakraborty D; Sehgal VK; Pal M
    Food Chem; 2015 Nov; 187():431-6. PubMed ID: 25977047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls.
    Nasr Esfahani M; Sulieman S; Schulze J; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Plant J; 2014 Sep; 79(6):964-80. PubMed ID: 24947137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing phosphorus fertigation management zones using electromagnetic induction, soil properties, and crop yield data under semi-arid conditions.
    Chtouki M; Nguyen F; Garré S; Oukarroum A
    Environ Sci Pollut Res Int; 2023 Oct; 30(48):106083-106098. PubMed ID: 37723396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.