These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25839275)

  • 1. Experimental verification of overlimiting current by surface conduction and electro-osmotic flow in microchannels.
    Nam S; Cho I; Heo J; Lim G; Bazant MZ; Moon DJ; Sung GY; Kim SJ
    Phys Rev Lett; 2015 Mar; 114(11):114501. PubMed ID: 25839275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microscopic physical description of electrothermal-induced flow for control of ion current transport in microfluidics interfacing nanofluidics.
    Liu W; Ren Y; Chen F; Song J; Tao Y; Du K; Wu Q
    Electrophoresis; 2019 Oct; 40(20):2683-2698. PubMed ID: 30883820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroosmotic flow analysis of a branched U-turn nanofluidic device.
    Parikesit GO; Markesteijn AP; Kutchoukov VG; Piciu O; Bossche A; Westerweel J; Garini Y; Young IT
    Lab Chip; 2005 Oct; 5(10):1067-74. PubMed ID: 16175262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical studies on liquid properties in extended nanospaces using mercury microelectrodes.
    Tsukahara T; Kuwahata T; Hibara A; Kim HB; Mawatari K; Kitamori T
    Electrophoresis; 2009 Sep; 30(18):3212-8. PubMed ID: 19722213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanointerstice-driven microflow.
    Chung S; Yun H; Kamm RD
    Small; 2009 Mar; 5(5):609-13. PubMed ID: 19226594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical synthesis on single cells as templates.
    Tam J; Salgado S; Miltenburg M; Maheshwari V
    Chem Commun (Camb); 2013 Oct; 49(77):8641-3. PubMed ID: 23945662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels.
    Davidson C; Xuan X
    Electrophoresis; 2008 Mar; 29(5):1125-30. PubMed ID: 18246575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip.
    Chung PS; Fan YJ; Sheen HJ; Tian WC
    Lab Chip; 2015 Jan; 15(1):319-30. PubMed ID: 25372369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of electrokinetic transport in silica nanofluidic channels.
    Wang M; Kang Q; Ben-Naim E
    Anal Chim Acta; 2010 Apr; 664(2):158-64. PubMed ID: 20363398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass transport in a porous microchannel for non-Newtonian fluid with electrokinetic effects.
    Mondal S; De S
    Electrophoresis; 2013 Mar; 34(5):668-73. PubMed ID: 23192435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastomeric microvalves as tunable nanochannels for concentration polarization.
    Quist J; Trietsch SJ; Vulto P; Hankemeier T
    Lab Chip; 2013 Dec; 13(24):4810-5. PubMed ID: 24158567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices.
    Plecis A; Tazid J; Pallandre A; Martinhon P; Deslouis C; Chen Y; Haghiri-Gosnet AM
    Lab Chip; 2010 May; 10(10):1245-53. PubMed ID: 20445876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory.
    Gillespie D; Khair AS; Bardhan JP; Pennathur S
    J Colloid Interface Sci; 2011 Jul; 359(2):520-9. PubMed ID: 21531429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electropreconcentration diagrams to optimize molecular enrichment with low counter pressure in a nanofluidic device.
    Ngom SM; Flores-Galicia F; Delapierre FD; Pallandre A; Gamby J; Le Potier I; Haghiri-Gosnet AM
    Electrophoresis; 2020 Oct; 41(18-19):1617-1626. PubMed ID: 32557702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of buffer acidity and surfactant chain-length on electro-osmotic mobility in thermoplastic microchannels.
    Wang SC; Lee CY; Chen HP
    Biosens Bioelectron; 2005 Apr; 20(10):2126-30. PubMed ID: 15741085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optic imaging of single and two-phase pressure-driven flows in nano-scale channels.
    Wu Q; Ok JT; Sun Y; Retterer ST; Neeves KB; Yin X; Bai B; Ma Y
    Lab Chip; 2013 Mar; 13(6):1165-71. PubMed ID: 23370894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiphysics simulation of ion concentration polarization induced by a surface-patterned nanoporous membrane in single channel devices.
    Jia M; Kim T
    Anal Chem; 2014 Oct; 86(20):10365-72. PubMed ID: 25266500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic biomolecule preconcentration using xurography-based micro-nano-micro fluidic devices.
    Yuan X; Renaud L; Audry MC; Kleimann P
    Anal Chem; 2015 Sep; 87(17):8695-701. PubMed ID: 26211837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.