These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25839283)

  • 1. Effective critical electric field for runaway-electron generation.
    Stahl A; Hirvijoki E; Decker J; Embréus O; Fülöp T
    Phys Rev Lett; 2015 Mar; 114(11):115002. PubMed ID: 25839283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental observation of increased threshold electric field for runaway generation due to synchrotron radiation losses in the FTU Tokamak.
    Martín-Solís JR; Sánchez R; Esposito B
    Phys Rev Lett; 2010 Oct; 105(18):185002. PubMed ID: 21231111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of two threshold fields for relativistic runaway electrons.
    Aleynikov P; Breizman BN
    Phys Rev Lett; 2015 Apr; 114(15):155001. PubMed ID: 25933316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Kinetic Instability in Runaway-Electron Avalanches and Elevated Critical Electric Fields.
    Liu C; Hirvijoki E; Fu GY; Brennan DP; Bhattacharjee A; Paz-Soldan C
    Phys Rev Lett; 2018 Jun; 120(26):265001. PubMed ID: 30004735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks.
    Paz-Soldan C; Cooper CM; Aleynikov P; Pace DC; Eidietis NW; Brennan DP; Granetz RS; Hollmann EM; Liu C; Lvovskiy A; Moyer RA; Shiraki D
    Phys Rev Lett; 2017 Jun; 118(25):255002. PubMed ID: 28696735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of the avalanche of runaway electrons in air in a strong electric field.
    Gurevich AV; Mesyats GA; Zybin KP; Yalandin MI; Reutova AG; Shpak VG; Shunailov SA
    Phys Rev Lett; 2012 Aug; 109(8):085002. PubMed ID: 23002751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Runaway positrons in fusion plasmas.
    Fülöp T; Papp G
    Phys Rev Lett; 2012 Jun; 108(22):225003. PubMed ID: 23003607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A confident source of hard X-rays: radiation from a tokamak applicable for runaway electrons diagnosis.
    Kafi M; Salar Elahi A; Ghoranneviss M; Ghanbari MR; Salem MK
    J Synchrotron Radiat; 2016 Sep; 23(Pt 5):1227-31. PubMed ID: 27577779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toroidal runaway beams.
    Fussmann G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013105. PubMed ID: 23410444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks.
    Spong DA; Heidbrink WW; Paz-Soldan C; Du XD; Thome KE; Van Zeeland MA; Collins C; Lvovskiy A; Moyer RA; Austin ME; Brennan DP; Liu C; Jaeger EF; Lau C
    Phys Rev Lett; 2018 Apr; 120(15):155002. PubMed ID: 29756886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of runaway electron beams by visible color camera in the Experimental Advanced Superconducting Tokamak.
    Shi Y; Fu J; Li J; Yang Y; Wang F; Li Y; Zhang W; Wan B; Chen Z
    Rev Sci Instrum; 2010 Mar; 81(3):033506. PubMed ID: 20370177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of velocity-independent electron transport in the reversed field pinch.
    O'Connell R; Den Hartog DJ; Forest CB; Anderson JK; Biewer TM; Chapman BE; Craig D; Fiksel G; Prager SC; Sarff JS; Terry SD; Harvey RW
    Phys Rev Lett; 2003 Jul; 91(4):045002. PubMed ID: 12906668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental observation of a magnetic-turbulence threshold for runaway-electron generation in the TEXTOR tokamak.
    Zeng L; Koslowski HR; Liang Y; Lvovskiy A; Lehnen M; Nicolai D; Pearson J; Rack M; Jaegers H; Finken KH; Wongrach K; Xu Y; Textor Team
    Phys Rev Lett; 2013 Jun; 110(23):235003. PubMed ID: 25167504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions.
    Lehnen M; Bozhenkov SA; Abdullaev SS; ; Jakubowski MW
    Phys Rev Lett; 2008 Jun; 100(25):255003. PubMed ID: 18643669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous dissipation of elastic energy by self-localizing thermal runaway.
    Braeck S; Podladchikov YY; Medvedev S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046105. PubMed ID: 19905388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Runaway youths and correlating factors, study in Thailand.
    Techakasem P; Kolkijkovin V
    J Med Assoc Thai; 2006 Feb; 89(2):212-6. PubMed ID: 16579008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale size of magnetic turbulence in tokamaks probed with 30-MeV electrons.
    Entrop I; Lopes Cardozo NJ ; Jaspers R; Finken KH
    Phys Rev Lett; 2000 Apr; 84(16):3606-9. PubMed ID: 11019157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of an electric field on air filament decay at the trail of an intense femtosecond laser pulse.
    Bodrov S; Aleksandrov N; Tsarev M; Murzanev A; Kochetov I; Stepanov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053101. PubMed ID: 23767637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Runaway electron current reconstitution after a nonaxisymmetric magnetohydrodynamic flush.
    McDevitt CJ; Tang XZ
    Phys Rev E; 2023 Oct; 108(4):L043201. PubMed ID: 37978661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of an electrostatically modified Kuramoto-Sivashinsky-Korteweg-de Vries equation arising in falling film flows.
    Tseluiko D; Papageorgiou DT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016322. PubMed ID: 20866740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.