These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25839314)

  • 1. Electrohydrodynamics near hydrophobic surfaces.
    Maduar SR; Belyaev AV; Lobaskin V; Vinogradova OI
    Phys Rev Lett; 2015 Mar; 114(11):118301. PubMed ID: 25839314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamics within the electric double layer on slipping surfaces.
    Joly L; Ybert C; Trizac E; Bocquet L
    Phys Rev Lett; 2004 Dec; 93(25):257805. PubMed ID: 15697946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions.
    Medina S; Zhou J; Wang ZG; Schmid F
    J Chem Phys; 2015 Jan; 142(2):024103. PubMed ID: 25591334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics.
    Joly L; Ybert C; Trizac E; Bocquet L
    J Chem Phys; 2006 Nov; 125(20):204716. PubMed ID: 17144732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-osmotic flow along superhydrophobic surfaces with embedded electrodes.
    Schönecker C; Hardt S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063005. PubMed ID: 25019877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic boundary condition of water on hydrophobic surfaces.
    Schaeffel D; Yordanov S; Schmelzeisen M; Yamamoto T; Kappl M; Schmitz R; Dünweg B; Butt HJ; Koynov K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):051001. PubMed ID: 23767478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetics over hydrophobic surfaces.
    Karan P; Chakraborty J; Chakraborty S
    Electrophoresis; 2019 Mar; 40(5):616-624. PubMed ID: 30474869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalization of interfacial electrohydrodynamics in the presence of hydrophobic interactions in narrow fluidic confinements.
    Chakraborty S
    Phys Rev Lett; 2008 Mar; 100(9):097801. PubMed ID: 18352750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the combined effects of dielectric and viscosity profiles on surface capacitance, electro-osmotic mobility, and electric surface conductivity.
    Bonthuis DJ; Netz RR
    Langmuir; 2012 Nov; 28(46):16049-59. PubMed ID: 22905652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip.
    Huang DM; Cottin-Bizonne C; Ybert C; Bocquet L
    Langmuir; 2008 Feb; 24(4):1442-50. PubMed ID: 18052395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces.
    Bouzigues CI; Tabeling P; Bocquet L
    Phys Rev Lett; 2008 Sep; 101(11):114503. PubMed ID: 18851287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-osmotic flow in hydrophobic nanochannels.
    Silkina EF; Asmolov ES; Vinogradova OI
    Phys Chem Chem Phys; 2019 Oct; 21(41):23036-23043. PubMed ID: 31599900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic boundary conditions and dynamic forces between bubbles and surfaces.
    Manor O; Vakarelski IU; Tang X; O'Shea SJ; Stevens GW; Grieser F; Dagastine RR; Chan DY
    Phys Rev Lett; 2008 Jul; 101(2):024501. PubMed ID: 18764184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetic instability near charge-selective hydrophobic surfaces.
    Shelistov VS; Demekhin EA; Ganchenko GS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013001. PubMed ID: 25122363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the slip length in the slipping friction between background electrolytes and peptides through the modeling of their capillary zone electrophoretic mobilities.
    Deiber JA; Piaggio MV; Peirotti MB
    Electrophoresis; 2013 Sep; 34(18):2648-54. PubMed ID: 23712447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ions at hydrophobic interfaces.
    Levin Y; dos Santos AP
    J Phys Condens Matter; 2014 May; 26(20):203101. PubMed ID: 24769502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of polyelectrolyte adsorption.
    Carrillo JM; Dobrynin AV
    Langmuir; 2007 Feb; 23(5):2472-82. PubMed ID: 17261051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water slippage versus contact angle: a quasiuniversal relationship.
    Huang DM; Sendner C; Horinek D; Netz RR; Bocquet L
    Phys Rev Lett; 2008 Nov; 101(22):226101. PubMed ID: 19113490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consistent description of electrohydrodynamics in narrow fluidic confinements in the presence of hydrophobic interactions.
    Chakraborty J; Pati S; Som SK; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046305. PubMed ID: 22680572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.