These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
453 related articles for article (PubMed ID: 25839353)
1. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Grouleff J; Irudayam SJ; Skeby KK; Schiøtt B Biochim Biophys Acta; 2015 Sep; 1848(9):1783-95. PubMed ID: 25839353 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulations of GPCR-cholesterol interaction: An emerging paradigm. Sengupta D; Chattopadhyay A Biochim Biophys Acta; 2015 Sep; 1848(9):1775-82. PubMed ID: 25817549 [TBL] [Abstract][Full Text] [Related]
3. Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices. Thibado JK; Martfeld AN; Greathouse DV; Koeppe RE Biochemistry; 2016 Nov; 55(45):6337-6343. PubMed ID: 27782382 [TBL] [Abstract][Full Text] [Related]
4. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the water defect at the HIV-1 gp41 membrane spanning domain in bilayers with and without cholesterol using molecular simulations. Baker MK; Gangupomu VK; Abrams CF Biochim Biophys Acta; 2014 May; 1838(5):1396-405. PubMed ID: 24440660 [TBL] [Abstract][Full Text] [Related]
6. Transmembrane helices can induce domain formation in crowded model membranes. Domański J; Marrink SJ; Schäfer LV Biochim Biophys Acta; 2012 Apr; 1818(4):984-94. PubMed ID: 21884678 [TBL] [Abstract][Full Text] [Related]
7. Role of charged lipids in membrane structures - Insight given by simulations. Pöyry S; Vattulainen I Biochim Biophys Acta; 2016 Oct; 1858(10):2322-2333. PubMed ID: 27003126 [TBL] [Abstract][Full Text] [Related]
9. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology. Lee TH; Hirst DJ; Aguilar MI Biochim Biophys Acta; 2015 Sep; 1848(9):1868-85. PubMed ID: 26009270 [TBL] [Abstract][Full Text] [Related]
10. Structural insights into functional lipid-protein interactions in secondary transporters. Koshy C; Ziegler C Biochim Biophys Acta; 2015 Mar; 1850(3):476-87. PubMed ID: 24859688 [TBL] [Abstract][Full Text] [Related]
11. Functional competition within a membrane: Lipid recognition vs. transmembrane helix oligomerization. Stangl M; Schneider D Biochim Biophys Acta; 2015 Sep; 1848(9):1886-96. PubMed ID: 25791349 [TBL] [Abstract][Full Text] [Related]
12. Cholesterol promotes the interaction of Alzheimer β-amyloid monomer with lipid bilayer. Yu X; Zheng J J Mol Biol; 2012 Aug; 421(4-5):561-71. PubMed ID: 22108168 [TBL] [Abstract][Full Text] [Related]
13. Cholesterol modulates the structure, binding modes, and energetics of caveolin-membrane interactions. Sengupta D J Phys Chem B; 2012 Dec; 116(50):14556-64. PubMed ID: 23199331 [TBL] [Abstract][Full Text] [Related]
14. Cholesterol behavior in asymmetric lipid bilayers: insights from molecular dynamics simulations. Yesylevskyy SO; Demchenko AP Methods Mol Biol; 2015; 1232():291-306. PubMed ID: 25331142 [TBL] [Abstract][Full Text] [Related]
16. Thermosensing via transmembrane protein-lipid interactions. Saita EA; de Mendoza D Biochim Biophys Acta; 2015 Sep; 1848(9):1757-64. PubMed ID: 25906947 [TBL] [Abstract][Full Text] [Related]
17. Coarse-grained molecular dynamics provides insight into the interactions of lipids and cholesterol with rhodopsin. Horn JN; Kao TC; Grossfield A Adv Exp Med Biol; 2014; 796():75-94. PubMed ID: 24158802 [TBL] [Abstract][Full Text] [Related]
18. Effects of cholesterol on pore formation in lipid bilayers induced by human islet amyloid polypeptide fragments: a coarse-grained molecular dynamics study. Xu W; Wei G; Su H; Nordenskiöld L; Mu Y Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051922. PubMed ID: 22181459 [TBL] [Abstract][Full Text] [Related]