These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25839677)

  • 21. Objective criteria to assess representativity of soil fungal community profiles.
    Schwarzenbach K; Enkerli J; Widmer F
    J Microbiol Methods; 2007 Feb; 68(2):358-66. PubMed ID: 17084474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134.
    Manzano M; Morán AC; Tesser B; González B
    Antonie Van Leeuwenhoek; 2007 Feb; 91(2):115-26. PubMed ID: 17043913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semi-automated genetic analyses of soil microbial communities: comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches.
    Hartmann M; Frey B; Kölliker R; Widmer F
    J Microbiol Methods; 2005 Jun; 61(3):349-60. PubMed ID: 15767011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical data analysis of bacterial t-RFLP profiles in forensic soil comparisons.
    Quaak FC; Kuiper I
    Forensic Sci Int; 2011 Jul; 210(1-3):96-101. PubMed ID: 21377814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discrimination of soils at regional and local levels using bacterial and fungal T-RFLP profiling.
    Macdonald CA; Ang R; Cordiner SJ; Horswell J
    J Forensic Sci; 2011 Jan; 56(1):61-9. PubMed ID: 20840292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Applying microbial biogeography in soil forensics.
    Habtom H; Pasternak Z; Matan O; Azulay C; Gafny R; Jurkevitch E
    Forensic Sci Int Genet; 2019 Jan; 38():195-203. PubMed ID: 30447564
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metagenomics.
    Gilbert JA; Laverock B; Temperton B; Thomas S; Muhling M; Hughes M
    Methods Mol Biol; 2011; 733():173-83. PubMed ID: 21431770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shotgun metagenomics of biological stains using ultra-deep DNA sequencing.
    Brenig B; Beck J; Schütz E
    Forensic Sci Int Genet; 2010 Jul; 4(4):228-31. PubMed ID: 20457050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Random whole metagenomic sequencing for forensic discrimination of soils.
    Khodakova AS; Smith RJ; Burgoyne L; Abarno D; Linacre A
    PLoS One; 2014; 9(8):e104996. PubMed ID: 25111003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study of different laboratory storage conditions for enhanced DNA analysis of crime scene soil-blood mixed sample.
    Badu-Boateng A; Twumasi P; Salifu SP; Afrifah KA
    Forensic Sci Int; 2018 Nov; 292():97-109. PubMed ID: 30292937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-dimensional TRFLP-SSCP is an effective DNA fingerprinting strategy for soil Archaea that is able to simultaneously differentiate broad taxonomic clades based on terminal fragment length polymorphisms and closely related sequences based on single stranded conformation polymorphisms.
    Swanson CA; Sliwinski MK
    J Microbiol Methods; 2013 Sep; 94(3):317-24. PubMed ID: 23880418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recovery of trace DNA and its application to DNA profiling of shoe insoles.
    Bright JA; Petricevic SF
    Forensic Sci Int; 2004 Oct; 145(1):7-12. PubMed ID: 15374589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of molecular techniques to characterize the microbial communities in contaminated soil and water.
    Malik S; Beer M; Megharaj M; Naidu R
    Environ Int; 2008 Feb; 34(2):265-76. PubMed ID: 18083233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities.
    Oros-Sichler M; Gomes NC; Neuber G; Smalla K
    J Microbiol Methods; 2006 Apr; 65(1):63-75. PubMed ID: 16102860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa.
    Geisen S; Laros I; Vizcaíno A; Bonkowski M; de Groot GA
    Mol Ecol; 2015 Sep; 24(17):4556-69. PubMed ID: 25966360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An RNA-based analysis of changes in biodiversity indices in response to Sus scrofa domesticus decomposition.
    Bergmann RC; Ralebitso-Senior TK; Thompson TJ
    Forensic Sci Int; 2014 Aug; 241():190-4. PubMed ID: 24967869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field-based detection of biological samples for forensic analysis: Established techniques, novel tools, and future innovations.
    Morrison J; Watts G; Hobbs G; Dawnay N
    Forensic Sci Int; 2018 Apr; 285():147-160. PubMed ID: 29518713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput DNA extraction of forensic adhesive tapes.
    Forsberg C; Jansson L; Ansell R; Hedman J
    Forensic Sci Int Genet; 2016 Sep; 24():158-163. PubMed ID: 27448236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the potential of bacterial DNA profiling for forensic soil comparisons.
    Heath LE; Saunders VA
    J Forensic Sci; 2006 Sep; 51(5):1062-8. PubMed ID: 17018082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time Radically Alters Ex Situ Evidentiary Soil 16S Bacterial Profiles Produced Via Next-Generation Sequencing,
    Badgley AJ; Jesmok EM; Foran DR
    J Forensic Sci; 2018 Sep; 63(5):1356-1365. PubMed ID: 29464695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.